
AD A274 699 UMENTATION PAGE No. 0704018

I AGENCY USE ONLY (Lea e biank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

13 May 93J Final
4, TITLE AND SUBTITLE r FUNDING NUMBERS
Information Systems Criteria for Applying Software
Reengineering: Guidelines for Identifying Information
Systems for Software Reengineering

6, AUTHOR(S)

Tamra K. Moore

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . PERFORMING ORGANIZATION
Defense Information Systems Agency REPORT NUMBER

Center for Information Management
Software Systems Engineering Directorate
701 South Courthouse Rd
rlington, VA 22204-2199

9. SPONSORING MONITORING AGENCY NAME(S) AND AQ&4 10. SPONSORING MONITORING 4
Director, Defense Information j) I

111. SUPPLEMENTARY NOTES

12a DISTRIBUTION AVAILABILITY .TATEMENT 12b DISTRIBUTION CODE

Approved for Public Release, Distribution is Unlimited

13. ABSTRACT ýMa)xmut, 200vvrd(i5)
Knowing when to reengineer is key to helping managers make decisions that are cost
effective and beneficial to reaching their organizational goals. The Software
Reengineering Criteria provides assistance in identifying automated information
systems (AIS) that are candidates for reengineering and proposes how software
reengineering technology can benefit AIS. Experiences in industry, government
agencies, and academia fostered the development of this Criteria for identifying
candidate information systems for software reengineering. This paper presents the
Software Reengineering Criteria in four parts. First, a set of terms defines the
activities within reengineering technology (Section 2: Definitions). An overview
summarizes other sources providing guidance for when to reengineer (Section 3:
Existing Guidance for Software Reengineering). The criteria charcterizes software
systems and software engineering envionments that exhibit the potential to benefit
from reengineering technology and presents recommendations for software reengineer-
ing strategies (Section 4: Software Reengineering Criteria). Finally, potential
application areas for the Criteria are explored (Section 5: Application Areas for
Selection Criteria).

"14 SUBJECT TERMS DOCUMENTS TO BE ADDED TO THE CIM ACCOUNT 15. NUMBER OF PAGES
103

Software Reengineering, reverse engineering, maintenance, 16 PRICE CODE

Software Process Improvement

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NTIS CRAMlDTIC TAB •
Defense Information Systems Agency UnannoCe

Joint Interoperabillty Engineering Organization Justifinanon
Center for Information Management

701 South Courthouse Road; Arlington, VA 22204-2199 B_._
Distribution I

Availability Codes

Avail and I orDTC QUALMT INSPECTED Dist Special

Center for Information Management
Information Systems Criteria for Applying

Software Reengineering

May 1993
• I i I I I i -Iil

OCT 7- 1993

-'] • . : , " . -.

Prepared by:

Software Systems Engineering Directorate
Reengineering Division

94-01408'Ul *3Blll~•' "94"' 1 -12 002
0i_/ 07 2

Defense Information Systems Agency
Joint Interoperability Engineering Organization

Center for Information Management
701 South Courthouse Road; Arlington, VA 22204-2199

Center for Information Management
Information Systems Criteria for Applying

Software Reengineering

May 1993

Prepared by:

Software Systems Engineering Directorate
Reengineering Division

FOREWORD

This document was prepared by the Defense Information Systems Agency, Joint
Interoperability Engineering Organization (DISA/JIEO), Center for Information Management,
sponsored by the Office of the Director of Defense Information. The Software Systems
Engineering Directorate, Reengineering Division welcomes any comments concerning the
contents of this document.

TABLE OF CONTENTS

SECTION PAGE

Foreword i

Table of Contents .. ii

List of Figures ... iv

Executive Sum mary .. v

1. INTRODUCTION
1.1 Scope I
1.2 M otivation .. 2

2. DEFINITIONS ... 3
2.1 Definitions of Terms ... 3

2.1.1 Software Reengineenng 3
2.1.2 Reverse Engineering 3
2.1.3 Restructuring 4
2.1.4 Forward Engineering 4
2.1.5 Redocumentation 4
2.1.6 Translation .. 4
2.1.7 Software Reuse 4

2.2 Interfaces Between Reengineering Activities 5
2.2.1 Reverse engineering and Redocumentation 5
2.2.2 Restructuring and Reengineering 6

2.3 Reengineering Process .. 6

3. EXISTING GUIDANCE FOR REENGINEERING 9
3.1 STSC's Reengineering Candidate Selection Process 9
3.2 Joint Logistic Commanders Santa Barbara I Workshop 9
3.3 NIST Variables for Reengineering Effectiveness 10
3.4 Other Guidance Sources 10
3.5 Conclusions . .. 11

4. SOFTWARE REENGINEERING CRITERIA 12
4.1 Existing Software System Criteria 13

4.1.1 Product Characteristics 13
4.1.1.1 Software Characteristics 13

ii

4.1.1.2 System Characteristics 17
4.1.1.3 Environment Characteristics 18

4.1.2 Process Factors 2t
4.1.2.1 Development Factors 20
4.1.2.2 Maintenance Factors 22

4.2 Reengineered Software System Criteria 24
4.2.1 Product Characteristics 24

4.2.1.1 Target Software Characteristics 24
4.2.1.2 New Support Characteristics 26
4.2.1.3 New Environment Characteristics 28

4.2.2 Process Factors 29
4.2.2.1 Organization Factors 29
4.2.2.2 Methodology Factors 31
4.2.2.3 Resource Factors 32

5. APPLICATION AREAS FOR SELECTION CRITERIA 35
5.1 Homogeneous Application 35
5.2 Heterogeneous Application 35
5.3 Results of Effort to Define Selection Criteria Method 36

6. CONCLUSION ... 37

List of References . .. 38

APPLENDICES

Appendix A - GLOSSARY OF TERMS A-1
Appendix B - EXISTING SOFTWARE REENGINEERING GUIDANCE SOURCES .. B-1
Appendix C - SOFTWARE REENGINEERING CASE STUDY DATA C-I
Appendix D - SOFTWARE REENGINEERING CRITERIA TABLES D-1
Appendix E - SOFTWARE REENGINEERING CRITERIA QUESTIONNAIRE E-1
Appendix F - EXAMPLE SOFTWARE REENG1NEERING CRITERIA APPLICATION F-1

iii

LIST OF FIGURES

FIGURES PAGE

2-1. Comparison of Software Reengineering Activities 5
2-2. Software Reengineering Activities Relationships 7
2-3. Software Reengineering Activities Data Flow 8
4-1. Software Reengineering Criteria Categories 12

iv

EXECUTIVE SUMMARY

Knowing when to reengineer is key to helping managers make decisions that are cost-
effective and beneficial to reaching their organizational goals. The Software Reengineering
Criteria provides assistance in identifying automated information systems (AIS) that are
candidates for reengineering and proposes how software reengineering technology can benefit
AIS. Experiences in industry, government agencies, and academia fostered the development
of this Criteria for applying software reengineering technology to information systems by
providing guidelines for identifying potential candidates for reengineering. The Criteria
provides support for.

(1) predicting the return on investments made by reengineering existing software
systems, and

(2) providing the business case for achieving the highest rate of return from software
reengineering technology.

Reengineering emerges as a strategy for bringing the cost of developing and
maintaining software under control. The need for a comprehensive plan to achieve goals, set
objectives, develop strategies, and apply reengineering technology is the driving force in many
new modernization efforts throughout the Department of Defense. Determining which
software system can benefit from reengineering technology and how it will benefit is the first
step in these efforts. The Software Reengineering Criteria will assist managers facing this
situation.

Ultimately, the process of software reengineering must support the high-level goals of

an organization, which include

(1) elimination of non-essential products and processes,

(2) increasing the value of those remaining; and

(3) increasing the efficiency of those processes through streamlining, simplification
and/or automation [Room92].

Two broad concepts guide software reengineering technology development in the DoD.
The first is the prevention of unnecessary duplication by joint use of personnel, information
systems, facilities, and services across DoD. The second concept is conformance to new
regulations, policies, standards, and guidelines for software acquisition and support. Current
practice within the Federal government is the application of reengineering to perform Pre-
planned Product Improvement (lWI) efforts or modernize software systems to meet new

v

standards. These standards include using the Ada programming language, moving towards
open software systems, and maintaining compliance with the Portable Operating System
Interface Exchange (POSIX). Guidelines include integrating Commercial Off-the-Shelf
(COTS) whenever possible, including Computer-Aided Software Engineering (CASE) into
existing software engineering environments.

This paper summarizes the results of work defining a criteria for identifying automated
information systems that may benefit from software reengineering. This criteria defines the
information that currently serves as guidelines for making this determination. Future work
will apply these guidelines to establish each as a formal criteria for identifying information
systems as candidates for software reengineering.

This summary presents the Software Reengineering Criteria in four parts. First, a set
of terms defines the activities within reengineering technology (Section 2: Definitions). An
overview summarizes other sources providing guidance for when to reengineer (Section 3:
Existing Guidance for Software Reengineering). The Criteria characterizes software systems
and software engineering environments that exhibit the potential to benefit from reengineering
technology and presents recommendations for software reengineering strategies (Section 4:
Software Reengineering Criteria). Finally, potential application areas for the Criteria are
explored (Section 5: Application Areas for Selection Criteria).

Until recently, various terms were used interchangeably to describe the activities in
software reengineering. Industry, government, and academia are achieving a consensus on
terminology for the high-level activities within software reengineering and this document
presents a set of definitions that are representative of this consensus.

Several sources define guidance for determining when to reengineer, including Federal
agencies and others working in the commercial arena. This guidance lists important high-
level issues to consider prior to software reengineering, but does not discuss how the specific
characteristics of a software system influence the decision to reengineer.

The Software Reengineering Criteria defines the type of information that is used to
identify information systems as potential candidates for software reengineering and determines
how reengineering technology can benefit computer software systems. The Criteria is
composed of two categories: those that deal with the existing software system(s) and those
that are desired in the reengineered software system. Existing Software System Criteria
characterize existing software system(s), the environment in which it operates, and the process
by which it was developed and is currently maintained. Reengineered Software System
Criteria characterize the target software, the new support environment, the new operation
environment, and the factors which influence the software reengineering process.

The Software Reengineering Criteria was developed using data gathered from
completed reengineering projects. To date there is little documented experience estimating
the effort involved in software reengineering. As experience builds, so will the understanding

vi

of how software reengineering should be performed. This document serves as the basis for
such guidance and provides information that will benefit organizations considering software
reengineering technology.

vii

(This page intentionally left blank.)

viii

1. INTRODUCTION

The Software Reengineering Criteria provides assistance in identifying automated
information systems (AISs) that are candidates for reengineering and proposes how
reengineering technology can benefit these information systems. Knowing when to reenginecr
is key to helping managers make decisions that are cost-effective and beneficial to reaching
their organizational goals. Experiences in industry, government agencies, and academia were
used to develop this Criteria for selecting software systems to reengineer. The Criteria should
be supplemented by cost/benefit analysis for determining whether reengineering is an
appropriate means for modernizing software systems in a given environment. The Criteria
assists in predicting the return on investments made by reengineering existing software
systems, and supports the development of the business case for achieving the highest rate of
return from reengineering technology.

1.1 Scope

The Software Reengineering Criteria addresses information systems, primarily those
within the Department of Defense (DoD) and its jurisdictions. These software systems are
data-intensive, often interacting with a database, perform many processes in batch mode, and
are concerned with report generation. The term "software" will be used throughout this
document to refer to the source code programs implemented to meet requirements of a given
information system. The "software system" will refer to this software, excluding any
Commercial Off-the-Shelf (COTS) products with which this software integrates to fulfill the
overall requirements of the information system. The software system does not include the
hardware platform on which these components execute; the hardware suite is considered part
of the operational environment

This paper summarizes the results of work defining a criteria for identifying automated
information systems that benefit from software reengineering. Data gathered from completed
reengineering projects [Hobb91, MITR92, Ruhl9l] supported the development of the Criteria
which recommends a reengineering strategy utilizing reverse engineering, restructuring,
redocumentation, translation, and software reuse. These initial results succeed in identifying
potential criteria that currently serve as guidelines for making this determination, future work
will apply these guidelines for verifying each as a measurable criteria for applying software
reengineering.

This paper presents the Software Reengineering Criteria in four parts. First, a set of
terms for defining software reengineering activities is presented (Section 2: Definitions). An
overview of other sources that have provided guidance for when to reengineer is summarized
(Section 3: Existing Guidance for Reengineering). The Criteria is then presented along with

guidance for how data collected using the Criteria is used to determine how and when to
reengineer (Section 4: Software Reengineering Criteria). This guidance is based on key
practices within software engineering applicable to most organizations and therefore is not
dependent on an organization's maturity. Finally, potential application areas for the Criteria
are explored (Section 5: Application Areas for Selection Criteria).

1.2 Motivation

The Defense Information Systems Agency, Center for Information Management (DISA/CIM)
has the mission of providing information management technical services to the DoD
community. The DISA/CIM Software Systems Engineering Directorate is responsible for
assessing and promoting current reengineering technology in DoD modernization efforts. The
Software Reengineering Assistance Program has been established by the directorate to meet
this objective. This Program uses experiences in industry, government agencies, and
academia to develop the Criteria for selecting software systems to reengineer.

The DoD Information Management (IM) community has approximately 1.4 billion
lines of operational software today. Many of these systems were developed prior to the
availability of modem technologies, including methods, languages, and automation. The CIM
initiative for reducing the number of software systems across functional domains and
eliminating redundancy, has generated a strong need to modernize these systems. This
modernization is supported by software reengineering strategies that minimize development
costs, reduce maintenance expenses, and leverage existing software assets. To this end, the
Criteria will support the choice of information systems that will benefit from reengineering.

Reengineering is used in Pre-planned Product Improvement (PWI) efforts or modernize
software systems to meet new standards. These standards include MIL-STD-181 SA, Ada
Programming Language; FIPS 146-2, Government Open-Systems Interconnection Protocol;
and FIPS 151-1, Portable Operating System Interface Exchange (POSIX). Reengineering is
also used to improve the maintenance of existing software systems, by integrating Computer-
aided Software Engineering (CASE) into the existing software engineering environments. The
Software Reengineering Criteria will assist those managers faced with these situations.

2

2. DEFINITIONS

A set of definitions' for terms used to describe the activities within software
reengineering is presented in the following section (Appendix A GLOSSARY OF TERMS).
Until recently, the capabilities of reengineering were so tightly intertwined that these terms
were often used interchangeably. However, there are unique qualities in these activities which
distinguish them from one another, and these qualities form the distinction for each definition.
Industry, government, and academia have begun to reach a consensus on the major terms in
software reengineering and this document presents a set of definitions that are representative
of this consensus.

Software reengineering activities are distinct in two ways: (1) the objects acted upon
during the activity and (2) the products that are produced as a result of doing this activity
(Figure 2-1). In addition, the terms have specific primary objectives that are the goal of each
activity and there arm other issues that distinguish each activity from the others.

2.1 Definitions of Terms

2.1.1 Software Reenginerin. The examination and alteration of an information system to
reconstitute it in a new form. The process encompasses a combination of other processes
such as reverse engineering, restructuring, forward engineering, redocumentation, and
translation. The goal is to improve the software system (functionality, performance, or
implementation). The distinction is that additional functionality is often incorporated into the
system during this process [Kerr91, Perr92].

2.1.2 Reverse Engineering. The process of examining an information system by analyzing its
documentation, application software, and data structures within the environment in which the
information system operates. This analysis is performed to (1) identify the system's
components and their interrelationships, and (2) create representations of the system in
another form or at a higher level of abstraction. The goal is to understand the existing
software system (functions, performance, or implementation). Extracted information is
represented in a format which can be integrated into the life cycle for development of a
software system [Kerr9l, Perr92].

SThe definitions for reengineering, redocumentation, and restructuring are variations of the definitions

originally presented by Chikofsky and Crowss [Chik90].

3

2.1.3 BRstructuring. The transformation of a software system from one representation form to
another at the same relative abstraction level, while preserving the system's external behavior
(functionality and semantics). The goal is to improve a representation of the existing software
system. The distinction is that restructured systems are functionally equivalent to the existing
system, but should be easier to support [Kerr9 1].

2.1.4 Forward Engneering. Within the context of reengineering, forward engineering is the
software engineering activities that consume the products of reengineering activities primarily
reverse engineering, reuse, and new requirements to produce a target system. The goal is to
create a software system via reengineering. This term primarily refers to the process of
generating new software systems from reverse engineered designs. This term has evolved
within reengineering to refer to those software engineering activities (traditionally performed
during development) that are performed during or as a result of reengineering.

2.1.5 Redocurena . The creation or revision of a semantically equivalent representation
with the same relative abstraction level. The goal is to understand a given representation of
the existing software system (whether it be a specification, design, or implementation). The
distinction is that this activity does not alter the existing software system representation, nor
does it generate any new representation to replace any part of the existing representation.
Redocumentation produces supplementary information that provides understanding of the
existing system and its sub-parts. This activity is usually performed to assist in maintenance
of existing system.

2.1.6 Tranaai. Transformation of source code from one language to another or from one
version of a language to another version of the same language. The goal is to improve the
linguistic implementation of the software. This process is most successful when the two
languages are similar or have a defined mapping between syntax.

2.1.7 Softael Ruse. The application of existing software work products, including source
code, documentation, designs, test data, tools, and specifications, in a software development
effort other than the one for which each was originally developed. The goal is to facilitate
the return on investment (ROD; improve software quality and reliability; shorten system
development and maintenance times; increase productivity and minimize software-related
risks. Software reuse should be employed during reengineering and reengineering should be
applied to identify candidate reusable assets.

4

Term object product L Goal

Forward Engineering reverse engineered software generate software
design system from reverse

engineered products

Reengineering existing software new software improve software
system

Reverse Engineering existing software reverse engineered understand software
design system; prepare for

development of
replacement system

Restructuring existing software improved existing improve a given
software representation of
representation software system

Redocumentation uses software, existing supplemental understand software
documentation, and documentation system; maintain
available expertise existing system

Software Reuse software assets software component ROI. eliminate
(new context) redundancy

Translation existing source code or new source or design improve source code
design language code in alternate or design code

I language

FIGURE 2-1. Comparison of Software Reenaineering Activities.

2.2 Interfaces Between Reengineering Activities

The definitions above suggest strong relationships between terms which need
clarification. These relationships are (1) reverse engineering and redocumentation and (2)
restructuring and reengineering.

2.2.1 Reverse en in* an documentation. Software reverse engineering and
redocumentation have the goal to provide understanding of the existing software system. The
differences between these capabilities are the end product and the underlying motivation for
this activity. Reverse engineering generates a product that could potentially serve as a design
or specification for the generation of new software. Redocumenting software produces
supplementary reference material that explains a given representation of the software system,
whether it be design or implementation. Reverse engineering most often results in a more
comprehensive view of the software. Documentation usually explains a specific aspect of the
software system in further detail.

5

2.2.2 Restructuring and Reengineering. Restructuring and reengineering both improve the
software system, but restructuring is limited to the modification of a current representation of
the system code which will replace the existing representation, without introducing new
functionality, or implementation characteristics (i.e., programming language). Reengineering
often includes functional alterations and often succeeds in generating a completely new
implementation of the software in a new programming language.

23 Reengineering Process

The reengineering process often consists of several activities when it is applied to a
software system (Figure 2-2). A data flow diagram is a useful format for representing the
relationship between reengineering activities (Figure 2-3) relative to the data shared by each
activity.

6

ma

Fi a

73

|I!A
tI

1A

IJ

]I

I

FIGURE 2-2. Software Reengineering Activities Relationship.

7

_______________________________________ C,)
w

0
I-

______________________ Co
0
0�w

C

0

0

w

ow

I-zw

C)

�
2'c

Cow

0
I-

0
0.w

FIGURE 2-3. Software Reengineering Activities Data flow.

8

3. EXISTING GUIDANCE FOR REENGINEERING

Existing guidance for determining when to reengineer has been defined by the
Software Technology Support Center (STSC) [Sitt92b], the Joint Logistic Commanders (JLC)
Santa Barbara I Workshop [JLC92], the National Institute of Standards and Technology
(NIST) [Ruhl9l], and by others working in the commercial arena [Kerr9l, Perr92]. This
guidance lists important high-level issues to consider prior to reengineering and provides
assistance in determining what type of reengineering should be performed on a candidate
software system. It has also been suggested that there is a close link between software reuse
and reengineering [Stev92]. This guidance does not discuss how the specific characteristics
of a software system influence the decision to reengineer nor does it discuss the trade-offs for
differing reengineering strategies. More detailed summaries of this guidance are discussed in
Appendix B EXISTING REENGINEERING GUIDANCE SOURCES. A brief summary of
each source is presented below.

3.1 STSC's Reengineering Candidate Selection Process

The STSC's Reengineering Candidate Selection Process is a common-sense approach
to determining the most appropriate reengineering methodology to perform (e.g., restructure,
reverse engineer, redocument). The process is based on a set of weighted questions that are
dependent on three variables describing the software: complexity, importance, and longevity
[Sitt92b, p24].

3.2 Joint Logistic Commanders Santa Barbara I Workshop

The JLC Joint Policy Coordinating Group on Computer Resources Management
(CRM) sponsored the First Software Reengineering Workshop: Santa Barbara I on September
21-25, 1992 in Santa Barbara, California. Santa Barbara I brought together members of
Government, Industry, and Academia to define reengineering technology and determine the
impact of reengineering on software acquisition policies. The Proceedings of Santa Barbara I
contains a list of the most critical criteria for determining when to reengineer (Appendix B)
[JLC92]. Examples of this criteria include Technical Quality, Life-Cycle Remaining, and
Maturity Level. This criteria includes important issues to consider prior to reengineering, but
does not provide direction as to -what reengineering strategy to follow.

A draft Reengineering Economics Handbook (MIL-HDBK-REH) was developed
during Santa Barbara I [REH92]. This handbook defines a Reengineering Decision-Making
Process that is based on the STSC's Reengineering Candidate Selection Process. The MIL-

9

HDBK-REH is in draft form and will evolve as part of the on-going Santa Barbara I effort.
The objective of the handbook is to assist in deciding whether a software system should (1)
be maintained at a similar level of effort, (2) reengineered to change, modify, or improve the
software, or (3) replace the current software with a completely new system.

3.3 NIST Variables for Reengineering Effectiveness

A NIST study performed in 1991 concluded that the effectiveness of reengineering is
dependent on three variables [Ruhl9l, p14]: (1) corporate and system goals; (2) condition of
the current application and documentation; and (3) available resources (tools and personnel).
A few of the recommendations which resulted from this study include the following [Ruhl9l,
p16-23]:

When procuring equipment, require conformance to applicable standards (e.g., FIPS) to
achieve flexibility and ease in future migrations.

While design recovery is difficult, time-consuming, and essentially a manual process, it is
vital for recovering lost information and information transfer.

Provisions in terms of personnel and effort must be made to compensate for the lack of
full support of the reengineering process by currently available off-the-shelf tools.

Adequate storage capacity and processor speed in equipment supporting the reengineering
tools are essential to facilitate the reengineering process.

It is critical that the application system experts be involved throughout the reengineering
process. They are essential for design recovery.

3.4 Other Guidance Sources

Other recommendations for determining when a software system is applicable for
reengineering have been defined by industry representatives in recent literary articles [Kerr9l,
Perr92]. These recommendations provide general guidance that is useful when deciding when
to reengineer, but are highly intuitive and do not provide any indications as to how the status
of a candidate application impacts the success of the reengineering process.

Kerr and McGovern consider reengineering as part of the maintenance process
(Kerr9l]. Candidate applications are categorized into three types of systems based on levels
of importance (this is similar to the STSC Process). High importance applications should be
reverse engineered to improve quality and ease maintenance. Applications of medium

10

importance should be reengineered, during which other applications of similar importance are
combined to justify resources necessary to perform this activity and consolidate systems, thus
minimizing resources for more than one system. Applications that are not important should
be left alone, assuming that the resources necessary for reengineering these systems are not
worth the benefits.

Perry defines reengineering activities within the scope of downsizing from mainframe
to microcomputer platforms. Since most object-oriented modeling, CASE, and reengineering
tool support is available on workstations, downsizing is often intrinsic to the reengineering
process selected. Downsizing begins with a three-step process, starting with the selection of
the appropriate application, component analysis for partial-downsizing, and finally the
determination of a technique for downsizing. These techniques include using a commercial
packaged environment that enables the microcomputer to perform like a mainframe, in which
case the application should be able to execute in its existing form. The other three techniques
include restructuring, reengineering, and reverse engineering.

3.5 Conclusions

The STSC process provides useful guidelines for determining a reengineering option
for a candidate software system. The NIST goal variables must also be considered in order to
predict the success of the reengineering. The Software Reengineering Criteria considers the
characteristics of the existing software system and the desired target system, the available
reengineering technology, as well as the impact of such issues as those defined by the NIST
goal variables.

11

4. SOFTWARE REENGINEERING CRITERIA

The Software Reengineering Criteria provides insight into the benefits of reengineering
technology. The Criteria is composed of two categories: criteria that describe the existing
software system(s) and criteria defined by reengineering technology (Figure 4-1). Existing
Software System Critena characterize the existing software system, the environment in which
it operates, and the process by which it was developed and is currently maintained.
Reengineered Software System Criteria characterize target software systems, new support
environments, new operational environments, and the factors which influence the
reengineering process.

- -ovelm moaue"/\ /\C
F E- 1 o arRn l n MO

always heri

applid to FiGUR seii 4-.software sysemoanetrsfwreengineering Critriaoateerie.

An individual criteria can also be examined for its impact on applying reengineering

12

technology. For example, the impact of available design information when reengineering can
be examined by looking up the criteria called Design.

The Criteria should be measured numerically where possible, otherwise documented in
concise, easily understood terms. It is important to be consistent when applying the Criteria
across multiple software systems and to be aware of the differences in units of measurements
when comparing external data.

Each of the criteria is defined in terms of product and process2 . A tabular listing of
the Criteria is located in Appendix D SOFTWARE REENGINEERING CRITERIA TABLES.
The impact of each criteria on reengineering is discussed, including a description of the
reengineering strategy that is recommended given that certain criteria is met.

4.1 Existing Software System Criteria

Existing Software System Criteria is composed of product characteristics that describe
the existing software system, the environment in which it operates, and process factors which
influenced the development and maintenance of the system.

4.1.1 Prduct Characteristics. Product characteristics describe the software system, including
software characteristics and system characteristics, and the characteristics describing the
environment in which this system operates.

4.1.1.1 Softwae Characteristigs. Software characteristics describe the source code of the
system. Several authors have defined software characteristics which impact reengineering
(maintenance) [BoehSl, NIST, Sitt92a, Sitt92b]. The Software Characteristics Criteria are
defined below.

Software Characteristics Dsr~

Complexity software constructs (conditionals, iterations,
statements), calls to external routines, and I/0

Data structure variables, constants, complex structures (records,
linked lists), user-defined constructs

Languages number of implementation languages and defined
grammars for each

2 Product criteria are referred to as characteristics, since this criteria usually describes an attribute of the
software or its environment. Process criteria are called factors since this criteria influence the activities of
developing, maintaining, and reengineering.

13

Modularity defined, unique functionality in each module

Size SLOC, function points, number of modules/objects,
bytes, number of files

Software change rate average number of modifications, both corrective and
perfective, over a given period of time

Software importance Number of times this software is accessed in a given
period of time; is the software functionality life-
threatening; does the software perform some
function(s) not performed anywhere else in the
organization?

Structural quality an analysis of the structure of the software system, i.e,
missing code, code that is never executed; evidence of
work-arounds.

Q keiV describes the software constructs (conditionals, iterations, statements), calls to
external routines, and I/O. There are several methods for calculating software complexity,
including McCabe Cyclomatic Complexity3 . Restructuring the existing software may lessen
the complexity without altering the functionality of the software. Emphasis should be placed
on eliminating "goto" statements and code that is never executed. The software can also be
reverse engineered to a high-level design which is then restructured and used to generate a
more concise and efficient implementation of the software. The reverse engineering process
must be verified to insure that the recovered design accurately captures the existing software.
This process is preferred when there are additional implementation changes desired, such as
converting to the Ada programming language.

Dat stture describes the variables, constants, complex structures (records, linked lists), and
user-defined constructs in which data is stored in the software. It also includes the naming
conventions utilized in the original software implementation. Data design is the key structural
component in most information systems, requiring extensive database management. The
largest percent of functionality in most information systems is performed within the context of
data management. The data architecture is often the driving force behind the software control
flow architecture. For this reason, emphasis should be placed on the data design because it
will force modifications to the process design [Ruhl9l, p17]. Redocumentation may provide
insight into the current structure of the data, generating tables of variable names, and
identifying within the software where the data is used and modified. Steps should be taken to
rename data to more informative terms as permitted in the current software implementation
[MITR92] and to adhere to DoD standards concerning data naming conventions. Reverse
engineering the data model and integrating an efficient data management facility will provide
the biggest payoff for most information systems [MITR92]. Improved naming conventions

3 McCabe, Thomas J, "A Complexity Measure," IEEE Transactions on Software Engineedng, December

1976, pp. 308-320.

14

may only be achieved by reimplementing in a new programming language, such as a language
that does not limit variable name length or characters that can be used. Migration to
advanced hardware platforms also can improve data structure and naming conventions through
increased memory capacity.

LAn = describe the programming languages used to implement the software. For many
information systems the COBOL programming language was used and sometimes a hardware-
dependent assembly language. The functions of many information systems are limited in
number and are repeated throughout all similar software systems. There are many automated
translation tools which can be used to convert COBOL-based programs to new
implementation languages. Translation is usually most successful in efforts where the goal is
to solely generate a new version of the system in another language that is similar to the
current language or a different version of the same language. A translation strategy is most
successful with small programs where the software architecture and data structure will remain
the same. Reverse engineering to a language-independent design is an alternative to
translation which may be more time-coný ng and expensive. This design can then be used
to generate a more efficient representation of the software, taking advantage of the new
language constructs. Translation does not incorporate alternative implementations which use
the unique features of the target language. This must be accomplished through manual
conversion or restructuring techniques.

Modhl refers to the ability to identify and isolate unique functionality within the software.
An organization should examine all software systems that it maintains for functional
commonality and consider eliminating redundancy and minimizing maintenance by combining
functionality into single systems. Each application system should be evaluated with the intent
of discovering what is worth retaining for future use and what is not [Ruhl9l, p17].
Organizations need to identify the important functions within software systems that should be
maintained as legacy. The designs and implementations of these requirements should be
isolated and examined for potential software reuse. The implementations can be reverse
engineered to capture the design for future use. Implementations that serve important
functions may be restructured to achieve the optimal implementation for multiple use. All of
these components should be well-documented.

Siz= defines the volume of the software in some standard unit of measure. There are several
sources for measuring the size of software systems, including Albrecht and Gaffney4, and the
Software Engineering Institute (SEI). The most common measurement is source lines of code
(SLOC), although critics argue as to its usefulness in software planning and control [Keme93,
p87]. Function points are another unit of measure that delineates size through specifying
functions which the software performs as a way of measuring the magnitude of the software.
Other units of measure that have been proposed include number of modules, objects, bytes,
and number of files. Consistent measurements and the ability to adjust to other defined units

4 Albrecht, A., and J. Gaffney, "Software Function, Source Lines of Code, and Development Effort

Prediction," IEEE Transactions on Software Engineering, vol SE-9, no. 6, November 1983, pp. 639-648.

15

of measure is the most important issue when comparing data. Cost and schedule will also be
impacted by the size. In general, reengineering processes that are easy to automate will be
more successful on smaller software modules. More manual efforts will be required on largtr
modules.

Software change rate describes the average number of modifications, both corrective and
perfective, performed on a software system during a given period of time. This rate is often
indicative of the number of defects in the software, or may reflect the variety and volume of
users. Assessments should be made to determine what the needs of the user are relative to
the functionality of the software. An ever-changing software system should be quickly
migrated to a more efficient support environment to better adapt to the needs of the user.
Unnecessary functionality should be eliminated, and desired functionality improved. Reverse
engineering to a Computer-aided software engineering (CASE) environment can provide
automated support and is also useful generating a more modem system.

Software importa is determined by the number of people or organizations which utilize the
software system. Users of the system also include external automated systems with which the
candidate system interfaces. Examples of highly critical software systems include those that
perform functions in no other software system, those which could not easily be replaced with
another system, and those which would have a detrimental effect on the organization if they
were to be eliminated. A payroll system could be considered a highly critical system, since
its elimination would have an enormous impact on the organization should the employees
experience a delay in their pay. If the system performs life-threatening functions or unique
functions which no other system performs, then the system is also highly critical. Information
dependencies between the candidate system and external systems, as well as other systems
within a like domain should be identified [Ruhl9l, p15]. The organization should make a
determination as to why the system is important and consider redevelopment or reverse
engineering, while the system remains in use. This system should probably be an example
system to analyze from a functional viewpoint as a basis for determining new technology that
will improve the overall current business practices of the organization [Ruhl9l, pl5]. The
cost of reengineering these systems should be weighed heavily against the importance of its
functions and ample support should be given to improve and secure this type of software
system for extended use. Highly critical systems should be further examined for
consolidation to minimize the number of overall systems which the organization must support.

Strucitral ouality describes the structure or architecture' of the software system. The software
architecture may be well-structured and suitable for quickly converting to a modem
progrmming language or hardware platform. In this case, translation can be an effective
means for performing this conversion. Poorly structured software is a candidate for code
restructuring or for reverse engineering to produce a design representation that can then be
restructured [MITR92]. Poor structure may cause automated tools difficulty in analyzing the

5 Architecture includes the implementation design of the software. The term Design is used to define a

criteria under Development Factors that refers to the existence of a high-level representation of the software.

16

source code. Time may be wasted on analyzing and reverse engineering dead code that is of
no value to the system requirements. It may be advantageous for a team of programmers to
examine the code manually, identifying such areas in the code and perhaps to manually
discard or modify them. Redocumentation techniques can often report on the structural
quality of source code. Automated redocumentation exists that generates structure charts'
which define the procedures used to implement the software, including the calling hierarchy,
naming conventions, and input and output of data between these modules. This is useful in
quickly identifying modules which are never executed, are not represented in an existing high-
level design, or utilize global data [STSC92].

4.1.1.2 System Characterisics. System characteristics describe any commercial or external
software packages that integrate with source code to form a complete system. These
characteristics also include alternate configurations in which the system exists for different
customers and external software applications with which the software interacts to meet high-
level requirements. The overall requirements that this system performs that may be outdated
and the importance of the system to the organization are also part of this criteria.

System Characteristics eciio

Alternate configurations whether or not there are alternate configurations of this
system; if so, a description of these configurations and
scenarios for when each is an alternative

Commercial software interface number of commercial software packages that interface;
and a description of that interface

Requirement obsolescence to what degree the system requirements are no longer
viable; which requirements are viable

Alternate configurations identifies whether or not there are alternate configurations of this
software system. The requirements justifying these versions should be identified and it should
be determined whether the alternate configurations can be consolidated into a single software
system. Restructuring the system may improve modularity for identifying specific functions
and enable a system to incorporate functions previously performed in other systems. Reverse
engineering permits the consolidation of these functions into a uniform design representation
that can then be used to generate the new software system.

Commercial software interface describes the number of commercial software packages that
interface the software system. It is important to identify all of these interfaces and understand
the structure of each to insure that any reimplementation or modification to the existing
software does not alter this interface. Reengineering is considered for improving poorly
integrated system components [MITR92]. Most modernization efforts integrate commercially

I Structure charts depict the structure of the software as defined by Edward Yourdon and Larry Constantine

in Structured Dsign, Englewood Cliffs, NJ: Prentice Hall, 1979.

17

available software components, including database management systems (DBMS) and other
software packages to meet system requirements. The key issue in most of these integration
efforts is the data interchange format. Commercial packages do not easily interact with older
programming languages of hardware platforms, thus requiring conversion to new software and
hardware implementations. Reverse engineering the software to a design representation
provides a means for achieving this type of conversion. The design can be restructured to
better integrate commercially available system components and reimplemented in modem
programmning languages for state of the art hardware.

Rouirement obsolescenc describes to what degree the system requirements are no longer
viable. Current system functionality may not conform to user needs. Obsolete requirements
should be eliminated from the existing system during reengineering. Source code which
performs these requirements should be extracted from the software prior to restructuring if
possible, else afterwards. Reverse engineering to the design level may more easily identify
the portions of the software performing these outdated requirements and can easily be
removed from the design prior to reimplementation.

4.1.1.3 Environment Characteristics. Environment characteristics describe the organization's
primary functions with respect to how the software system operates. Domains of interest
which the organization supports are defined within this information system(s), including
personnel management, financial, and procurement. The software system executes on
computer hardware and possibly interfaces with other hardware components. The high-level
organizational goals which this system supports also reflect the operational environment. The
number and type of external interfaces and how the system is used are also part of the
operational environment.

Environment Characteristics

Domain consistency whether or not the system exists within a domain and the
description of that domain; whether or not the system
needs to fit within a domain and a description of that
domain (e.g., personnel, financial)

Hardware interface definition of the hardware upon which the system
depends and a description of this interface; whether or
not the system can reside on more than one
hardware/software platform; identification and description
of those platforms if currently residing on more than one

Organizational goals describes the high-level goal(s) of the organization
relative to this software system and the function this
system plays in accomplishing this goal(s).

Usage number and type of interactions with the system by
individuals, other organizations, and external automated
systems

18

Domain consistency describes whether or not the system exists within a domain and the
description of that domain. Modifications to the system must conform within the constraints
of this domain. Often reverse engineering is performed to migrate a software system to a
domain that provides consistency across similar applications in an organization.
Reimplementation of the new system should consider reuse options for achieving domain
consistency as well as consolidation of functionality across multiple software systems.

Hardware interfac describes the current hardware platform upon which the software system
executes and a description of the dependencies of the software on this platform. The
hardware capabilities often restrict software implementation options and these may change
given an alternative platform. Antiquated hardware is often the reason for modernizing the
software system (MITRE92]. Fewer dependencies may ease migration to a new hardware
configuration, while strong ties may impact the technical approach taken to modernize the
software. Reverse engineering is useful for generating a hardware-independent design of the
software and determining implementation dependencies which resulted from that platform.
The hardware-independent design can then be implemented for alternate hardware
configurations.

Organizational goals describes the high-level goals of the organization relative to the software
system and the function this system plays in accomplishing these goals. Room defines the
high-level goals of most organizations to include the elimination of non-essential products and
increase the value of those remaining. [Room92]. Reengineering should only be performed
after careful analysis of how the software systems within an organization currently support
these primary functions. Keyes quotes C. Finkelstein7, who said, "Legacy code contains the
business rules of an organization at a particular time" [Keye92, p39]. Since the organization
must adapt to the changing environment to stay competitive, the software system must allow
the flexibility to adapt as well. Software systems which no longer support the organization's
primary functions and goals should not be considered for reengineering; these systems are
seldom used and should be discarded. Systems of minimal to moderate use that do not
support these activities should be further examined for individual component importance.
Relevant components should be identified, isolated, and stored for possible integration into
other systems of importance in software reuse. Only those systems addressing the current
primary functions and future goals should be considered for reengineering.

Usag• describes the amount of use the software system undergoes, including the number and
type of interactions with the system by individuals, external organizations and other
automated systems. The needs of these entities must be maintained when modernizing the
system. In many cases it is precisely these needs that are driving the reengineering effort.
M•o&nuizing the system promises to improve response times by the system as well as by
mal.•ainers responding to change requests from the users. Reverse engineering to an

SClive Finkelstein is the founder of Information Engineering Systems Corporation (IESC), Alexandria, VA.
He writes, lectures, and espouses methodologies for information engineering, and has recently completed
Information Engineering: Strategic Systems Development, Addison-Wesley Publishers, 1992.

19

automated support environment helps improve the modification process. Redocumentation
provides supporting documentation to maintainers making decisions about modifications.
Restructuring the software may enable the system to more readily accept modifications
without negatively impacting
other parts of the system.

4.1.2 Proce.sactI[s. Process factors describe-the aspects of the original development
process and the maintenance process which have impacted the current implementation of the
software system.

4.1.2.1 Dy pment Factors. Development factors define aspects of the development process
which have affected the software system implementation. The development process for a
software system is key to how well it can be maintained throughout its life-cycle. The age of
the software can indicate the software engineering practices employed at the time of
development and reflects the usefulness of the software. The availability of original
developers is helpful for unraveling the mysteries of design and implementation decisions.
The use of documented standards in the development process may also have supported the
creation of a quality software system.

Develooment Factors Qg§Gijin

Design comprehensive high-level design of the software that is
consistent and complete to the current implementation

Development methodology whether or not a well-defined development procedure
was used; whether it Is documented in text available to
the public; whether or not this methodology is supported
by automation

Documentation supplemental documents including reports, tables, users
guides which describe aspects of the system not
necessarily relating to the design

Standardization use of well-documented development standards,
continued throughout maintenance

Deign is a comprehensive high-level representation of the software that is consistent and
complete to the current implementation. If this representation exists, it may be used or
restructured to reimplement the software in a standard development process. If the existing
design is not consistent or complete, it may be used as supplemental documentation during a
reverse engineering process which will produce a more comprehensive and current
representation. Reverse engineering is used to generate designs for software systems that do
not have an available design that is complete or consistent with the current implementation of
the software system that is useable in a effective maintenance process. This may include
designs that were not originally developed using structured modeling techniques or are not
supported by an automated process (automation provides necessary efficient maintenance

20

support) [McCa92]. The design may serve as an end product that provides system
understanding or may serve as a memas for implementing a new system with added
functionality or new programming language. Reverse engineering the data model for
information systems often lends insight into how to restructure the data for an improved
implementation.

D ment methodology identifies whether or not a well-defined development procedure
was used in developing this software. If a documented methodology was used, then it may be
easier to understand the impact of this methodology on the implementation of the software
and the design of the software, if it exists. It is also important to note if automation was used
in developing the software system. If the previous development procedure is still a viable
development methodology, then consideration should be given for utilizing this method in
regenerating the software system.

D t describes any reports, tables, or design record that exists for the software
Systtaion is credited with being the key to adequate software maintenance, and
yet it is still the most unqualified segment of the software engineering process.

There are useful suggestions that can be performed immediately to improve the
documentation status of a software system [Hova92]. Obsolete documents, such as those that
have not been used in more than a year, should be discarded since they are either outdated or
unusable. Perform a documentation audit to determine what documents are needed and set
about generating these documents or making additions to existing incomplete documents.
This can be performed by examining trouble reports that were diagnosed as help requests, or
the user help requests, if these are logged. Finally, new development, as well, as
eengineering should establish documentation as a top priority in these processes. A lack of

adequate dcuentation is the most common reason for considering reengineering [Ruhl91].
Redocumentation techniques produce various types of documents to supplement the software
system implementations (specification, design, source code). Reports defining the variables,
procedure calls, and procedure interfaces can be useful in gaining a better understanding of
the software. Documentation supports reverse engineering by providing supplemental
information that is useful in distinguishing design and requirements information from
implementation idiosyncracies.

k describes the utilization of standard development techniques during the
original development process. These techniques may be proprietary standards, internal to the

rganization, or may be DoD standards (e.g., DoD-STD-2167 or the proposed MIL-STD-
SDD). The standards used in the development of the existing software may provide insight
into why design and implementation decisions were made, and to where modernization can be
applied to the software. No utilization of documented standards indicates that the software
should probably be converted to an implementation that adheres to current software
engineering standards. This can be achieved through translation (for language conversion), or
reverse engineering to a more open systems environment.

21

4.1.2.2 Maintenance Factors. Maintenance Factors define aspects of the maintenance process
which have affected the software system implementation. A common reason for
reengineering is often an inability to adequately maintain the existing software [MITRE92].
A good development process can easily be weakened by poor maintenance practices. Many
systems have survived years of unmonitored modifications to the software, resulting in
unstable implementations. The criteria to consider concerning maintenance are listed below.

Maintenance Factors Descrion

Automation whether or not an automated process is used for
modifications

Configuration management a management process for controlling and documenting
modifications and versions of the software system

Improvement status to what degree the system could be improved to meet
current known requirements and a description of these
Improvements; to what degree the system could be
improved to meet current known requirements efficiently.

iUfe expectancy the number of years this system is expected to remain in
operation

Modification effort rate of modification over number of modifications
multiplied by the average number of maintainers to
complete

Modification rate number of modifications per a given period of time
relative to a desired number

Automation factor identifies whether or not an automated process is used for supporting the
existing system configuration. Incorporating automation is usually a high-level goal of most
organization since it can increase the efficiency of many processes, including development
and maintenance [Room92]. Automated tools can assist the maintenance process, including
language sensitive editors for performing source code modifications and automated
configuration management to provide version control and document the changes made to the
software. Preparation for maintenance can begin in the development process. Computer-
aided software engineering (CASE) tools which can be used to design and develop software,
should also be used to maintain it. Redocumentation is the most mature automation
capability. Redocumenting the software using an automated tool can provide fast information
about the source code architecture. Reverse engineering the software into a CASE tool serves
to automate the maintenance process.

Configuration management identifies whether or not a formal process exists for controlling
and documenting modifications to the software and alternate versions of the system. This
process may document the information helpful in identifying problem areas in the system,
those which are modified or corrected often. These functions may be isolated and
implemented in a modem software system.

22

Improvement status identifies to what extent the system is operating according to the current
system requirements. There are several methods for measuring faults in source code,
including Gaffney'. If there are current defects in the software or modifications that have
been requested which have not been implemented, either due to modification effort or cost,
this may be a good time to consider reengineering options. An analysis of the system may
identify isolated parts of the software which are not performing adequately. These parts may
be reverse engineered, modified at the design level, and reimplemented. The corrected parts
can then be integrated back into the remaining software. Most existing source code
components are so tightly interweaved, that it is usually necessary to reverse engineer the
entire software system and generate a more modular software system.

This criteria also identifies to what degree the system could be impro-red to meet
current known requirements efficiently. If the system has many modifications that are
necessary in order for it to reach an acceptable level of performance, then consideration
should be given for whether this software should continue as a functioning element in the
organization. It should be clearly understood what changes are necessary and incorporate
those into a reengineering process. Restructuring can be applied to improve the performance
of the software without introducing new functionality. Reverse engineering can be used to
abstract a high-level design which could then be used to incorporate new functionality that is
implemented in a new software system.

Life identifies the number of years this software system is expected to remain in
operation. The system may not be operating much longer because the finctions are becoming
outdated or because the software system has been designated for replacement. If the software
is not expected to be in use much longer due to functional obsolescence, only improvements
to the current maintenance process should be considered. If the software has been designated
for replacement, certain reengineering capabilities are feasible. Only available resources
should be applied, including automated tools which currently exist in the organization.
Minimal redocumentation and restructuring should be performed to provide quick benefits for
improving maintenance and extending the life of the system to insure it remains operational
until replacement can be made. Extensive redocumentation, restructuring, and reverse
engineering of obsolete systems should be considered only if the option of replacing the
system can be upheld by revitalizing the existing one through these efforts.

odification ef (M) identifies the rate of modification (ML) over number of modifications
(n) multiplied by the average number of maintainers (in) to complete (M, = M/n*m). If the
existing software is very difficult to maintain, this may be a sign that it needs to be
reengineered. The software maintainers should be interviewed to determine if the difficulties
are due to a lack of understanding, complexity of the software, result in "rippling effect" that
leads to more problems.

' Gaffney, John E., "Estimating the Number of Faults in Code," IEEE Transactions on Software

Engineeri ng, vol SE-10, no. 4, July 1984, pp. 459-465.

23

Software understanding may be enhanced through the generation of supporting
documentation. Redocumenting the software to identify interrelationships between the
software components can improve maintenance procedures. This can be useful when
modifying software for predicting effects of change on other parts of the software.
Restructuring the software may reduce its complexity, and eliminate unnecessary code. Both
of these techniques may reduce the chances that one modification to the software may have a
disastrous effect on other parts of the software. Severe problems may only be solved through
reverse engineering and a complete regeneration of the software system.

Modification rate (M,) identifies the number of modifications per a given period of time
relative to a desired number. A large number of requests to correct or modify the software
system may be an indication that this system is not currently meeting the needs of the
intended users, has hidden defects, or is struggling to perform too many requirements. An
analysis should be performed to identify what the system actually does relative to what the
users of the system expect it to do. Redocumentation techniques should be used to define the
functions and performance of the existing software. Critical functions that the software
performs should be identified, isolated and perhaps reused. Reverse engineering the software
can also help provide a better understanding of what the software does, and the subsequent
design can be used to implement a new system that better meets the needs of the intended
users. This new system should integrate reusable modules. Testing should be performed on
the existing software based on these requirements to insure that the system is performing
accurately. If the system is performing too many requirements, steps should be taken to
isolate and identify the functions of the software to determine whether a more cohesive
system can be developed which better fulfills the needs of the users.

4.2 Reengineered Software System Criteria

Reengineered Software System Criteria include those criteria which describe the
desired products of reengineering and the factors which influence the reengineering process.

4.2.1 Product Characteristics. The Product Characteristics describe the desired characteristics
of the target software, the new support environment, and the new operation environment.

4.2.1.1 Targ f e Characteristics. The characteristics of the target software describe the
modifications that are desired between the existing software and the new software.

Target Software Characteristics Dcription
Functional improvement number and type of functional modifications which are

desired in parallel to the reengineering of this system;
test suite for verifying these

24

Language migration identification and description of the language
implementation requested for this system

Performance improvement identification and description of the desired performance
improvements for this system; test suite for validating
these

Technology insertion identification of specific technology advances that could
be implemented to improve the software system.
including new commercial packages

Funcionalimrovement describes the number and type of functional modifications which are
required for this system. If the number of lines of code changing is predicted to be more than
twelve percent, it is often suggested that the reengincering effort is too great, and that
consideration should be given for redeveloping the software system [Keye92]. The rational
behind Keyes percentage is not clear, however, the point is to weigh the level of effort for
the reengineering with that of redevelopment. Minor functional enhancement can usually be
performed through the maintenance process. Reengineering is useful when minor changes are
not easily made to the existing system or when there are enough changes to warrant
redeveloping the system, but there are no available resources to support a complete
development project.

Lankmit describes the identification and description of the language
implementation requested for this system. There are several reasons for reimplementing the
software in a different programming language, including implementation improvements
offered by the language or the desire to implement all software in a common language within
an organization to ease maintenance. Within DoD, the standard programming language
selected is Ada. Most modernization efforts within DoD are required to use Ada.
Reengineering the existing software to Ada is one way to adhere to this mandate. If the
current language implementation is similar to Ada, translation can be performed to the new
implementation and if necessary manual code generation for the software which does not
easily convert. Reverse engineering to a high-level design and then regenerating the software
in Ada is another option. Often the existing system implementation is used as the baseline, a
design, or supporting documentation which is referenced when generating a new software
system in the target language manually. This may prove to be the most time-consuming
effort.

Performancimprovemn describes the identification and description of the desired
performance improvements for this system. These improvements may be achievable in the
existing software implementation, and this should be considered. Although, more often these
performance requirements require improved hardware or new software implementation.
Improving the performance of the software may be an opportunity to reengineer to a new
system implementation. Translation to a new software language for execution on a new
hardware platform is one of the fastest migration techniques, however the translated software
may not utilize the capabilities of the target language or the new hardware. Reverse

25

engineering to a high-level design which can then be targeted for a new hardware suite is one
way to achieve these performance improvements.

Technology insertion is the identification of specific technological advances that could
improve the implementation of the software. This criteria does not include automated support
for the development or maintenance of software, which is defined in New Support
Characteristics. The awareness of new technology that may support the existing functionality
of the current software system or new requirements that are to be incorporated into the
existing system, may be performed through reengineering [MITRE92]. Reusable components
may be incorporated into the existing system to replace outdated components and improve the
performance of the software. Often improved data management facilities may be incorporated
into an information system which previously performed its data management in an ad-hoc or
hard-coded manner. Reverse engineering the data models from the software and incorporating
a commercial database may improve data management. New programming languages may be
used to implement a software system that contains improved library routines, flnctions and
data structures that better support the system requirements. Reverse engineering can salvage
an existing software design, which can then be restructured and reimplemented into a more
modem software system that utilizes advanced software engineering technology.

4.2.1.2 New Sup Characteristics. New support characteristics define the qualities desired
in a new maintenance process. The transition to a new support environment is often the
reason for considering reengineering. An organizational decision has been made to maintain
software systems using automation, necessitating the move of existing systems to the tool's
environment. This decision may be useful in providing more efficient support for software,
but the overhead of altering the software to enable this support may out-weigh the move.
Issues concerning this technology insertion should be considered carefully.

New SunArt Characteristics DJ o

Adaptability to what extent the new support environment will enable
the software system to adapt to a changing environment,
i.e., enhancements, alternate software/ hardware
implementations, Integration of new components

Automation insertion desire to maintain the software system using automated
techniques

Domain consistency to what extent the new support environment supports
other systems in the same domain

Maintenance improvement identification and description of specific improvements to
the overall maintenance process; to what degree the
current maintenance practices are no longer useful;
description of the problems

26

Adafabilily describes to what extent the new support environment will enable the software
system to adapt to a changing environment, i.e., enhancements, alternate software/hardware
implementations, integration of new components. These characteristics will prepare the
software system for future migrations. Reengineering is often used to modernize the software
to a implementation that is better suited for future migrations [MITRE92]. Restructuring the
data model and software architecture may better prepare the software for future modifications.
Reverse engineering the software into a CASE tool may facilitate the generation of
implementations in alternative languages. Eliminating hardware dependencies when using the
recovered design in a new implementation may make the software more portable for future
migrations to new or alternative hardware platforms.

Automation insertion describes the automated techniques that are needed to support the new
support environment. This criteria does not include implementation techniques supplied by
technological advances in software development, which was addressed in Target Software
Characteristics. The desire to automate the maintenance environment is often the reason for
modernizing a software system [MITRE92]. CASE tools which are used to develop software
systems are useful throughout the life of the software by supporting modifications to the
source code while updating designs and documentation.

Steps can be taken to integrate CASE into the existing software engineering
environment within an organization [CIM92]. This is most often successful in more modern
software systems and mature organizations. Many programming languages and older
hardware platforms do not support modem CASE tools, thus forcing the modernization of the
software system itself. Reverse engineering provides a means for extracting information and
populating CASE repositories with data that can be used to support the current
implementation. CASE often includes code generation support for reimplementing the
software into a more modem programming language.

Domain consistency describes to what extent the new support environment supports other
systems in the same domain. Systems that reside in a identifiable domain should be
considered for reengineering for achieving commonality through software reuse and
consolidation. Redocumentation techniques can be used to identify commonality between
software systems. Software system should be consolidated where possible. Reverse
engineering systems within a single domain can enable the generation of a consolidated
system from separate software programs implemented in varying languages and executing on
differing hardware platforms. Reuse modules should be used to implement common
functionality when possible.

Mai niabffi describes to what extent the new support environment provides improvements
to the overall maintenance process. This identifies specific technological advances that are a
part of the new support environment that improve the process of supporting the system
software and a description of how this is accomplished. The integration of CASE tools
promises to enable faster modifications to the software and automatic updates to supporting
documentation. Reverse engineering is used to produce a high-level design representation that

27

can be stored and automatically supported within a CASE tool. The ability to make changes
and generate updates to this representation and subsequently the implementation, should
improve response time to change requests.

4.2.1.3 New Environment Characteristics. New Environment Characteristics describe the new
operational environment to which the existing system must migrate. New operational
environment is the most common cause for considering reengineering. The new environment
may include the requirement to achieve domain consistency, migration to new hardware
platforms, as well as new system requirements.

New Environment Characteristics Desriptio

Domain integration identification and description of the new target
domain

New hardware platforms number and type of hardware interfaces which are
to be integrated to this system; identification and
description of alternative or new hardware
platforms

New usage new people, organizations, or automated systems
that must now interface with this software system

New organizational goals new organizational goal that must be addressed by
this software system and how

Domain integration is the identification and description of the new target domain. The
domain may be the programming language, hardware platform, or functional. Domains from
which the current system is far removed may be more difficult to reach through reengineering
and may require a completed redevelopment. A well-structured and modular software system
may incorporate replacement parts that are reuse software modules that immediately migrate
the existing system to a desired domain.

New hardware platforms is the identification and description of alternative or new hardware
platforms. An understanding of the new hardware platform and the current software interface
is crucial to the success of the system migration. This describes the number and type of
hardware interfaces which are to be integrated to this system. The new hardware platform
often drives the modification of the software to a new or alternate version. It may be
necessary to restructure or update the version of the current implementation language to
execute the software on the new hardware. Restructuring may be necessary, and replacement
of new library modules to accomplish the same functionality of the existing software. This is
also a time to consider an alternate implementation of the software in another programming
language that is more compatible with the hardware and operating system. Reverse
engineering and regeneration of the software may be useful in generating a new software
system for the new hardware.

28

New u= describes new people, organizations, or automated systems that must now interface
with this software system. These new interfaces may require functional improvement,
portability to new hardware platforms, new report generation format, and the ability to reply
to increased change requests. Reengineering is being considered for several software systems
within DoD that have been selected for use in multiple agencies to eliminate redundancy, but
will be maintained at one central location [CIM92]. Supporting organizations faced with an
inability to adequately address current maintenance issues are now considering reengineering
the software system to an automated environment which will improve maintenance process.

New oanizaional goals describes any new organizational goal(s) that must be addressed by
this software system. Room presented high-level goals of an organization which eliminate
non-essential products and processes, increase the value of those remaining; and increase the
efficiency of those processes through streamlining, simplification and/or automation
[Room92]. The organization may consider the candidate software system as non-essential and
in this case the best option is to eliminate this software system. More likely, this software
offers some value and should be examined for potential consolidation with other similar
systems for consolidation purposes that will streamline and simplify maintenance.
Automation may also be incorporated as discussed in paragraph 5.2.1.2 New Support
Characteristics and 5.2.2.2 Methodology Factors criteria below.

4.2.2 ProcessFactor. The process for performing reengineering is dep-,ndent on the high-
level goals of the organization, reengineering methodology, and the available resources.

4.2.2.1 Organization Factors. Organizational support for reengineering is imperative to the
success of the effort. Establish the context for reengineering by considering the corporate
goals of the organization and how reengineering could be applied to achieve this mission
[Ruhl9l, p15]. Reengineering promises to provide a potentially large payoff for little risk.
However, the fulfillment of this promise is often very application dependent. A large portion
of the billions of dollars spent over the past decade on information technology was invested in
the support and upgrade of information systems, however, there have been no notable
improvements in information management [Sass9l, pl 7].

The time and expense of reengineering is often not understood by management,
resulting in a loss of interest and withdrawal of support. Although estimates of five years
before benefits from reengineering emerge are not uncommon, management often wants to see
results in one year [Cumm92]. Benefits from reengineering have been defined according to
improvements in the number of software defects, time, and costs during the life of the
software [Wild9l]. These benefits are often seen in as early as one to two years. Realistic
estimates for resources on individual applications should be established initially and
management support secured for reengineering success. Resulting benefits from reengineering
should be measured in terms of quality enhancement as well as cost impact [Vowl91]. The
motivations and goal of the reengineering effort should be determined up front and then a

29

plan for achieving success developed that outlines steps to take and markers for calculating
success along the way [Ruhl9l, pl 6].

Organization Factors fljpjjin

Budget constraints budget limitations and predicted allocation of this amount
to various resources and phases of the intended
reengineering activity(s)

Effort estimations projected estimations regarding manpower and time for
performing the reengineering activity(s)

Management commitment definition of management expectations and limitations;
schedule for identification of management objectives and
proof of progress throughout the reengineering activity(s)

Schedule establish management approved schedule for performing
the reengineering activity(s), including alternative plans
based on trade-offs measured throughout the activity

Budge constraints identifies budget limitations to performing the desired modifications to the
software. Reengineering is often considered an inexpensive process. In fact, reengineering
can be quite expensive, particularly during design recovery. Design recovery may seem time-
consuming and costly initially, but can greatly impact the success of the reengineering.
Budget must also account for the training of reengineering methods and tools. The cost of
continuing in the current mode must be weighed against the estimated costs of-reengineering
to determine if the process is worth the effort. Given that a completed redevelopment is not
an affordable option in modernizing the software system, there are several options within
reengineering that may improve the current status of the system. Restructuring the source
code is one of the least expensive means for improving the source code. Restructuring for a
minimum cost can be performed to eliminate "dead code" and gotos. More advanced
restructuring reconstructs the data model or control flow of the software. Redocumentation
can also be performed to varying degrees of effort, including generation of reports defining
variables and data structures or generating a structure chart showing the software architecture.
These documents provide supporting information that may be useful during maintenance.
Most expensive effort is reverse engineering for full design recovery. If the budget permits,
this is one of the most comprehensive processes within reengineering providing a design
which can be used to reimplement the software.

Effort estimations identifies projected estimations regarding manpower and time for
performing the reengineering activity(s). Although fewer people are likely to be needed to
perform reengineering, the expertise of these individuals becomes more important.

Management commitment identifies definition of management expectations and limitations;
schedule for identification of management objectives and proof of progress throughout the
reengineering activity(s).

30

Schedule identifies the amount of time available for performing the modernization of the
software system. Reengincering can often be accomplished in less time than a complete
redevelopment effort. There are several reengineering capabilities which can be performed to
varying degrees within respective time frames that may suit a hard deadline schedule. Many
capabilities are supported by automation which also improves time.

42.2.2 Methodology Factors. Methodologies are proposed for many reengineering activities.
The appropriateness of a methodology is based on the needs of the organization,
characteristics of the application, funding, and personnel capabilities. The factors below
should be considered prior to selecting an appropriate methodology.

MethodolaoX Factors eciio

Automation support automated support for the methodology selected to
perform the reengineering

Forward engineerng support to what extent the reengineering tools support the
forward engineering processes; identification and
description of the interfaces to these processes

Methodology selection identify and select a well-defined methodology; insure
training is available and that the methodology meets the
goals of the organization; insure that the methodology is
usable across domains and in support throughout the
maintenance process

Reuse commitment investigate reuse options whenever possible

identifies the automated tools which support the reengineering
methodology. There are several tools available which support various reengineering activities
[STSC92]. It is important to be realistic in what these tools provide. Investigate their
capabilities and be prepared to address inefficiencies through adequate personnel who are
knowledgeable of these tools and can perform processes when the tools do not. Considering
the focus of most CASE tools for a particular computing environment, one set of CASE tools
should not be depended on for uniform applicability to all needs across an organization
[Ruhl9l, p21]. In addition, since several tools may be used during reengineering, it is
important to consider not only the impact of these tools on the existing software engineering
environment in the organization, but whether or not there is data interchange capability.
Good business sense should be applied when considering the purchase of expensive tools.

Forward en'erng sup r identifies to what extent the reengineering tools support the
forward engineering processes; identification and description of the interfaces to these
processes.

31

Methodology selected identifies a well-defined methodology; insures training is available and
that the methodology meets the goals of the organization. A methodology should be chosen
that is compatible to the requirements of the organization and are supported by automation
where possible [Ruhl9l, p2 1]. It is cost-effective if this methodology is usable across
domains and transitions the system to a better maintenance process.

Reuse commitment identifies that there is a commitment to investigate reuse options whenever
possilble. This is primarily a concern in forward engineering where reuse components should
be utilized whenever possible to supply required system functionality.

4.2.2.3 Resource Factors. Resources for performing reengineering are composed of automated
support, including hardware platforms and tools, and personnel. Reduced resources due to
budget cuts are often the reason behind considering reengineering as opposed to standard
development. Often the cost of reengineering is assumed to be very inexpensive and when it
is not, the process is often not completed or considered a failure. Reengineering should
ultimately be less expensive than redevelopment or estimates of continued maintenance
practices, but realistic estimates with regards to resources are needed for successful
reengineering.

4.2.2.3.1 ,utomatio Factors. Automation can be essential to ensuring the efficient, effective
renewal of software systems. Adequate storage capacity and processor speed in equipment
supporting the reengineering tools are essential to facilitate the reengineering process [Ruhl9l,
p21]. The environment suggested to adequately support the reengineering of COBOL-based
programs utilizes both personal computers and a mainframe [Dyso92].

Using equipment and tools that conform to applicable standards (e.g., POSIX) will
assist in eliminating incompatibility problems and will support future migrations [Ruhl9l,
p 16]. The primary factors that are considered in automated support are listed below.

Automation Factors Desjrijgjm

Capability limitations limitations on use of tool, i.e., maximum number of users,
limitations on methodology support

Platform support insure that hardware/operating systems and integration to
existing or selected reengineering platform environment;
identification of platforms supporting tools and the
limitations of this support

Target hardware support relationship of tool to hardware platform of reengineered
product (does the target hardware itself support the tool,
does the tool support the development of software for the
target hardware)

Tool availability does the tool currently exist in the organization, is the
organization capable of acquiring this tool, understanding
the cost and time for procurement

32

Ca£abilitX limitations identifies the limitations of available tools. The limitations of the
methods and tools must be understood up-front in order to accommodate for automation
inefficiencies by qualified personnel.

Platform u rt identifies the hardware/operating systems and integration to existing or
selected reengineering platform environment; the platforms supporting tools and the
limitations of this support.

IT•et hardware snport identifies the relationship of tool to hardware platform of
reengineered product (does the target hardware itself support the tool, does the tool support
the development of software for the target hardware).

Tool availability identifies whether the tool currently exists in the organization, is the
orgnization capable of acquiring this tool, understanding the cost and time for procurement

422.32 Pe.mnel Factors Key to the success of reengineering is the availability of persons
knowledgeable in both the existing system, target system, and the reengineering process. It is
critical that the existing system experts be involved throughout the reengineering process for
accomplishing correct design recovery [Ruhl9l, p23]. There must be commitment from these
experienced personnel to assist throughout the reengineering effort.

As with any technology, true productivity improvements can only be realized through
a balance of both enhanced technology and appropriate staffing of individuals vith the
specialized knowledge to use this technology [Sass9l, p20]. Reengineering requires a highly
trained staff that has experience in the automated tools and the specific programming
languages to be used in the reengineering effort [Ruhl9l, p22]. The inefficiencies of available
tools can often be compensated by experienced personnel. The Criteria listed below addresses
the availability of experienced personnel who take part in the reengineering effort.

Pe[sonnel Factors flsgfl~fl

Existing system expertise does the personnel exist with the expertise on the
existing system and are they committed to the
reengineenng effort

Target system expertise does the personnel exist with the expertise on the
desired target system and are they committed to the
reengineering effort

Reengineering expertise does the personnel exist with the expertise on the
methodology and automated tools for performing the
reengineering activity(s) and are they committed to the
reengineering effort

Existing system exprtise identifies the personnel with the expertise on the existing system.

During reverse engineering and redocumentation, these experts should verify that the

33

recovered design and support documentation accurately portray the software system. They
should also be consulted to clarify complex or confusing aspects of the software system
throughout the reengineering process. During restructuring these individuals should be used
to verify that this process is not altering the functionality of the software system (during
restructuring, existing and target system expertise are usually the same individuals since only
the performance aspects of the system are altered and functionality remains the same).

TarWet system expertise identifies personnel who possess the expertise on the desired target
system. These individuals should verify new requirements for achieving the target system and
should be consulted to clarify any confusing aspect of the proposed target system. During
forward engineering these individuals should be consulted to insure the new system meets all
requirements, including functional and performance. During restructuring, these individuals
insure that performance has been improved.

Reenn* n etiDse whether the personnel exist with the expertise on the methodologies
and automated tools for performing the reengineering activity(s). These individuals should
work with the appropriate experts to match the technical approach for reengineering with the
characteristics of the software system and the desired target system. If these experts are not
available, the reengineering strategy must supply appropriate training for the methods and
tools associated with the reengineering strategy.

34

5. APPLICATION AREAS FOR SELECTION CRITERIA

A selection criteria can be used when (1) selecting a system from a set of functionally
homogeneous systems and (2) selecting a system from a set of heterogeneous systems.

5.1 Homogeneous Application

Homogeneous systems are identified by their similarities in finctionality through
domain analysis. Examples of these domains include Personnel, Finance, and Payroll. The
selection among homogeneous systems may support consolidation efforts or elimination of
multiple configurations. The criteria which are important in this selection include, but are not
limited to the following-.

- portability of system to alternate hardware platforms
- existence of alternate configurations for this system
- ability of system to meet domain requ ts
- how well system performs
- potential new users of system

52 Heterogeneous Application

A single organization may be responsible for many systems that are functionally very
different (heterogeneous). This organization may have decreasing resources to adequately
support these systems, including budgets, personnel, and computer resources. Selecting a
system for reengineering among heterogeneous systems is often dependent on some of the
following criteria:

- Systems ability to meet current organizational goals
- Amount of use this system experiences
- Life expectancy of this system (from a functional view)
- Effort to modify system
- Number of modifications system has experienced
- Impact on organization's maintenance costs

35

5.3 *Results of Effort to Define Selection Criteria Method

The results of CIM/XE's effort to identify a selection criteria provided insight into the
way systems are currently chosen as candidates for reengineering. Two important conclusions
include:

(1) the current process for identifying information systems as candidates for software
reengineering is tool-dependent and ad-hoc; and

(2) data from reengineering efforts is needed to validate a selection criteria for
identifying information systems as candidates for software reengineering.

The current process for identifying automated information systems for software
reengineering is constrained by the capabilities of available reengineering tools. The criteria
currently used to select information systems insures that available reengineering tools will
work effectively on these information systems. Many information systems in DoD, however,
typically have very different characteristics than those often selected for reengineering pilot
projects. Table 1 depicts a comparison of these characteristics.

Chaaceirlistics of Systems In CharactedstIcs of Typical Information
Reengineering Pilot Projects Systems Within DoD

small in size very large (100,000+)
Cobol-based may Include assembly or proprietary languages
no external software Interfaces interfaces with external software
well-defined functionality unknown functionality/lacks documentation
no additional functionality is required additional functionality is needed
no interface with operating system calls to operating system routines

These characteristics indicate that software reengineering is limited by the capabilities
of automated tools. The technology is still immature and not well-defined. The proof that
current software reengineering technology is capable of fully supporting large-scale
conversion efforts is not shown.

Project data from reengineering efforts should help define a selection criteria for
identifying information systems that benefit from reengineering. Currently, there is not
enough data or the type of data to support a formal selection criteria for selecting information
systems for software reengineering. As a result, the CIM/XE work succeeded in identifying
the type of data which appears to impact the software reengineering process. This data forms
a proposed selection criteria. We are identifying proposed reengineering efforts that could be
used to collect the data needed to validate and evolve the proposed selection criteria.

36

6. CONCLUSION

Ultimately, the process of reengineering must support the high-level goals of an
organization, including (1) elimination of non-essential products and processes, (2) increase
the value of those remaining; and (3) increase the efficiency of those processes through
streamlining simplification and/or automation [Room92]. Two broad concepts serve as the
guide for reengineering technology development, including the prevention of unnecessary
duplication by joint use of personnel, information systems, facilities, and services across DoD
and the conformance to new regulations, policies, standards, and guidelines for software
acquisition and support. The Selection Criteria provides insight into which information
systems might benefit from reengineering technology and how.

The Software Reengineering Criteria was developed using data gathered from
completed reengineering projects. To date there is little documented experience estimating
the effort involved in reengineering. Future plans are to gather data from reengineering
projects to validate the Criteria as a means for identifying software reengineering candidates.
The Criteria will decrease in number, while the understanding of its impact on software
engineering becomes more concrete. The application of the Criteria will provide information
useful in defining metrics and support for cost/benefit analysis for software reengineering. As
experience builds, so will the understanding of how reengineering should be performed. This
document serves as the basis for such guidance and provides information that will benefit
organiztios considering reengineering technology.

37

List of References

[Boeh81] B.W. Boehm, Software Engneering Economics, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[Chik90] EJ. Chikofsky and J.H. Cross, "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, pp. 13-17, January 1990.

(CIM92] I-CASE Readiness for I-CASE Pilot Projects (Draft Planm, Defense Information
Systems Agency, Center for Information Management, Arlington, VA,
November 1992.

[Curnm92] J. Cummings, "Reengineering is High on List But Little Understood...,"
Network World, July 1992, v9, n30, p27.

[DoD92] Functional Manageen ess for Implementing the Information Managem
Program of the Department of Defense DoD 8020.1-M (Draft), August 1992,
Director of Defense Information, Office of the Secretary of Defense.

[Dyso92] N. Dyson-Hudson, "Taming the COBOL Maintenance Monster,"
La g September 1992, v9, n9, p40(4).

[Hobb9l] R.L. Hobbs, J.R. Mitchell, and G.E. Racine, System Re-enmneering Project
Executive Sm a, ASQB-GI-92-003, Nov 1991.

[Hova92] H. Hovaness, "It's Here Somewhere," Qofomt Coptn Sept 1992, vl, n3,
p45(2).

[JLC92] Department of Defense Joint Logistic Commanders (JLC) Joint Policy
Coordinating Group on Computer Resources Management (CRM), Prceigs
of the Santa Barbara I Workshop, Santa Barbara, CA, September 21-25 1992.

[Kerr9l] J. Kerr and T. McGovern, "The Three R's of IS: Demystifying the Reverse
Engineering Revolution," Database Promgamming & Design, Oct 1991, v4, nl0,
p19(3).

[Keme93] C.F. Kemerer, "Reliability of Function Points Measurement," Communications
of the ACM, February 1993, Vol. 36, No. 2, p85(12).

[Keye92] J. Keyes, "Code Trapped Between Legacy, Object Worlds," Software
Magazn, June 1992, v02, n8, p39(5).

38

[McCa92] T.J. McCabe and E.S. Williamson, "Tips on Reengineering Redundant
Software," DATAMATION April 15, 1992, v38, n9, p7 l(4).

[MITR92] MITRE Corporation, "Lessons Learned: Re-engineering the Weighted Airman
Promotion System for the CIM Environment," Draft Report under contract
number DAAB07-91-C-N751, Software Engineering Center, MITRE
Corporation, dated 30 September 1992.

[NIST] National Institute of Standards and Technology, "Guidance on Software
Maintenance," NIST Special Publication Number 500-106.

[Pert92] W.E. Perry, "Follow These Three Steps for Downsizing Applications,"
Government Computer News, July 6, 1992, vI 1, n14, p20.

[REH92] MIL-HDBK-REH (DRAFT), Department of Defense Reengineering Economics
Han Sept 25, 1992.

[Room92] L. Roomets, "Integrating CASE with Business Process Re-Engineering,"
Proceedings CASE WORLD, Sep 30 - Oct 2, 1992, pD9-1 to D9-13.

[Ruhl9l] M.K. Ruhl and M.T. Gunn, "Software Reengineering: A Case Study and
Lessons Learned," NIST Special Publication 500-193, National Institute of
Standards and Technology, September 1991.

[Sass9l] P.G. Sassone, Office Productivity: The Impacts of Staffing. Intellectual
Spciaizaon and Technolry, Sept 1991 (rev. Nov 1991).

[Sitt92a] C. Sittenauer and M. Olsem, "Time to Reengineer," Crosstalk, Software
Technology Support Center, Hill AFB, Utah, March 1992.

[Sitt92b] C. Sittenauer and M. Olsem, "Reengineering Options Analysis," PrQceedngLQI
the Third Annual Systems Reengineering Technology Workshop.Naval Surface
Warfare Center, Silver Spring, MD, August 11-13, 1992, pp. 23-31.

[STSC92] Software Technology Support Center, Reengineering Tools Report. Hill Air
Force Base, Utah, 1992.

[Stev92] BJ. Stevens, "Linking Software Re-engineering and Reuse: An Economic
Motivation," Crosstalk, August 1992, pp. 13-20.

[Vowl9l] J. Vowler, "A Reengineering Union," Cornuter Week]y, Nov 7, 1992, p20 .

[Wild9l] C. Wilder, "Measuring the Payoff From Reengineering," Computerworld, Nov
18, 1991, v25, n46, p65.

39

Other References

DoD 8020.1-M Functional Process Improvement: Functional Management
Process for Implementing the Information Management
Program of the Department of Defense.

DoD-STD-2167A Defense System Software Development

DoD-STD-2168 Defense System Software Quality Program

MIL-STD-1815A Ada Programming Language

MIL-STD-7935A DoD AIS Documentation Standards

MIL-STD-SDD (DRAFT) Software Development and Documents

40

9]

APPENDIX A

GLOSSARY OF TERMS

A-i

GLOSSARY

Forward Engineering. Within the context of reengineering, forward engineering is the
software engineering activities that consume the products of reengineering activities (primarily
reverse engineering), reuse, and new requirements to produce a target system.

RedoQcumetation. The creation or revision of a semantically equivalent representation within
the same relative abstraction level.

Rengjnacdag. The examination and alteration of an information system to reconstitute it in
a new form. The process encompasses a combination of other processes such as reverse
engineering, restructuring, forward engineering, redocumentation, and translation.

Re===1nirig. The transformation from one representation form to another at the same
relative abstraction level, while preserving the information system's external behavior
(functionality and semantics).

Reverse Engneering. The process of examining an information system by analyzing its
docunentation, application software, and data structures within the environment in which the
information system operates.

softare. within the text of this document refers to the custom programs implementing a
given information system.

SoarRus. The process by which existing software work products (which may include
not only source code, but also products such as documentation, designs, test data, tools, and
specifications) are carried over and used in another new development efforts, preferably with
minimal modification.

sfare within the text of this document refers to the software, as well as any
database or other Commercial (COTS) package with which this software interfaces to perform
the requirements of the information system, independent of the hardware platform on which
these components execute.

Transati . Transformation of source code from one language to another or from one version
of a language to another version of the same language.

A-2

APPENDIX B

EXISTING SOFTWARE REENGINEERING GUIDANCE SOURCES

B-I

Existing software reengineering guidance sources are the Software Technology Support
Center [Sitt92], the Joint Logistics Commanders Santa Barbara I Workshop [JLC92], and the
National Institute of Standards and Technology [Ruhl9l].

STSC's Reengineering Candidate Selection Process

The STSC's Reengineering Candidate Selection Process is based on a set of weighted
questions [Sitt92b, p24] that are dependent on three variables: complexity, importance, and
longevity. Complexity and importance of the software system are calculated in terms of low,
medium, and high. The longevity of the system is estimated in terms of short (less than six
months), medium (greater than six months and less than 3 years), or long (greater than 3
years). The following section summarizes the STSC process.

Regardless of the complexity and importance, if the remaining life expectancy is less
than 6 months, then the system should not be reengineered. If the complexity and importance
are low and the system's life expectancy is less than 3 years, then the system is also not
suitable for reengineering. The remaining combinations of these three variables suggests
performing activities associated with reengineering that extend from simple reformatting to a
more complex restructuring of the software architecture, possibly including redocumentation,
to reverse engineering followed by forward engineering, and finally a complete
redevelopment.

Reformatting is suggested for systems whose life expectancy is greater than 6 months
and less than three years (medium life expectancy) and when the complexity is medium in a
system of little importance, or when the complexity is low in a system of medium importance.
Systems with life expectancies greater than 3 years (long life expectancy) which are not
complex and are of little importance are also candidates for reformatting. Reformatting
primarily serves to improve maintenance by cleaning up the appearance of the source code. It
does not alter the basic software architecture and requires little effort. There are several
reformatting tools available, including language sensitive editors and pretty printers.

The software architecture and data structures are optimized during the more
complicated process of restructuring. Systems of medium life expectancy which are highly
complex and of low to medium importance are good candidates for restructuring. Systems of
long life expectancy that are not complex and are of medium importance should also be
restructured. In addition to restructuring, redocumenting is also a helpful reengineering
process that extends the life of a software system. Candidate software systems for
restructuring in conjunction with redocumenting include those with long life expectancy that
are medium to highly complex with low importance.

Reverse engineering followed by forward engineering is the most time-consuming, but
potentially the most beneficial activity within reengineering. This activity is usually limited
to systems of great importance to an organization, since it is expensive, requiring commitment

B-2

of resources (tools, personnel) to be successful. Among very important systems with medium
life expectancy, regardless of complexity, reverse engineering is the suggested choice of
reengineering processes. Long life systems of medium importance that are medium to highly
complex and long life systems of great importance that exhibit low to medium complexity are
also likely candidates for reverse engineering. In conjunction with reverse engineering,
redocumentation is always suggested for highly complex systems. Not all candidates are
appropriate for reengineering. A complete redevelopment may be necessary for the highly
complex, very important system which is expected to have a long life.

The JLC Santa Barbara I Workshop

The JLC Santa Barbara I Workshop generated a list of the most critical criteria
determining when to reengineering [DOD92] (Figure A-l). A candidate application is rated a
value 1-4 as to how well the application meets each criteria.

THE MOST CRMCAL CRITERIA DETERMINING WHEN TO REENGINEER

Technial Quality

cost

Complexity

Miso Requirements

Importance

Ulea-yce Remaining

Change of Platform

Too Hard to Maintain

Budget Availability

User Satisfaction

Maturity Level

Documentation out of

Daet•ssng

Reliability

Maintenance Change Rate

Design Change

FIGURE A-1. SB14 Reenalngering Economics Critical Criteria.

The draft Reengineering Economics Handbook (MIL-HDBK-REH) defines a

B-3

Reengineering Decision-Making Process that is based on the STSC's Reengineering Candidate
Selection Process. There are two noteworthy differences between the original STSC Process
and the Process as it appears in the draft MIL-HDBK-REH. First, the variable called
"importance" was renamed "environmental risk." The weighted questions for this variable are
essentially the same. Secondly, the appropriate reengineering strategy(s) to follow after
applying this Process are presented in two charts: one for medium life expectancy (Figure 3-
1) and one for long life expectancy (Figure 3-2). The Process suggests that software with a
remaining life expectancy of less than 6 months should not be reengineered.

Complexity

Restructure Reverse then Reverse then Reverse then
Forward Forward ForwardHigh

Restructure Restructure Restructure Reverse then
Forward

Medium
Reformat Reformat Restructure Restructure

Low
Leave Alone Leave Alone Leave Alone Restructure

Low Medium High
Environmental Risk

FIGURE A-2. Santa Barbara 1: Medium Lifetime Remaining.

Complexity

Restructure Reverse then Redevelop Redevelop
Redocument Forward (P)

High
Restructure Restructure Restructure Reverse then
Redocument Forward

Medium
Reformat Reformat Restructure Restructure

Low
Leave Alone Leave Alone Leave Alone Restructure

Low Medium High
Environmental Risk

(P) - prostype

FIGURE A-3M Santa Barbara I: Long Lifetime Remaining.

B-4

National Institute of Standards and Technology Case Study

The recommendations which resulted from the NIST Case Study [Ruhl9l, p15-23]
include the following:

Establish the context for reengineering by considering the corporate goals of the
organization and how reengineering could be applied to achieve this mission.
Information dependencies between application systems must be identified [p15].

Analyze system requirements from a functional viewpoint and consider new
technology to improve current business practices [p15].

When procuring equipment, require conformance to applicable standards (e.g., FIPS) to
achieve flexibility and ease in future migrations [p16].

Identify motivations and what is to be achieved by reengineering [pl6].

Evaluate application system with the intent of discovering what is worth retaining for
future use and what is not [p17].

Stress data design because it will force modifications to the process design [pl7].

Evaluated code, documentation, maintenance history, and appropriate metrics to
determine the current condition of the system [p19].

While design recovery is difficult, time-consuming, and essentially a manual process,
it is vital for recovering lost information and information transfer [p19].

Identify critical system information. Do not be tightly tied to a certain set of
documentation forms; focus on information content and usage [p20].

Provisions in terms of personnel and effort must be made to compensate for the lack
of full support of the reengineering process by currently available off-the-shelf tools
[p21].

Considering the focus of most CASE tools for a particular computing environment,
one set of CASE tools should not be depended on for uniform applicability to all
needs across an organization [p21].

Adequate storage capacity and processor speed in equipment supporting the
reengineering tools are essential to facilitate the reengineering process [p21].

Consider CASE reengineering tools that provide methodologies which are compatible
to the requirements of the particular enterprise [p21].

B-5

Additional features that merit consideration include a data interchange facility and
appropriate metric analysis utility (p22].

Reengineering requires a highly trained staff that has experience in the current and
target system, the automated tools, and the specific programming languages [p22].

It is critical that the application system experts be involved throughout the
reengineering process. They are essential for design recovery [p23].

B-6

APPENDIX C

CASE STUDY DATA

C-I

Perhaps the best way to determine what factors influence the reengineering process is
to look at actual reengineering efforts as case studies. Only recently have there been
reengineering efforts of the magnitude to produce data that is useful in predicting the success
of reengineering similar applications. Some of these efforts have been documented [Hobb9l,
Ruhl9l, MITRE92]. The documented reasons for selecting these software systems for
reengineering varied, but the expected benefits listed below were the same. A summary of
the issues involved in these case studies is presented below.

Reasons for Considering Reengineering

The reasons for considering reengineering vary from anticipated support for continued
maintenance to support for development of modernized systems. Existing system are also
being examined for consolidation, by commonality among functions and redundancy. Another
reason for considering reengineering is to analyze the technology of reengineering for
determining its potential benefits.

Maintenancesutrt. Improved maintenance was one reason for reengineering in many of the
case studies examined. Manual processes were often used to support existing systems. It was
important to provide the ability to respond quickly and correctly to change requests. Existing
systems were being modified more to keep pace with the changing needs of the users since
fewer new systems were being developed. Reengineering the system to an implementation
which is more maintainable or to a CASE environment for automated support promised to
extend the life of the system.

Consolidation of Functionality. Consolidating functionality across software systems reduces
maintenance costs by decreasing the number of systems to support and eliminates redundancy
across domains. Many of the reengineering efforts examined were performed to consolidate
software systems within a single organization, as well as consolidate in business practice by
selecting a single system to be integrated in multiple organizations where duplicate systems
were performing the same function in like domains.

In an effort to minimize redundancy across agencies, DOD has begun initiatives to
select specific software systems for use by multiple organizations for performing the same
functionality. Traditionally, each agency maintained independent software systems that
performed functions in similar domains such as personnel, billing, and contracts. A single
software system is being selected for use in multiple organizations that would be supported at
one central location. The existing duplicate systems are to be reengineered for the
development of a single system for easy transition within various agencies. These systems
need to execute on a variety of hardware platforms, including personal computers and
mainframes. Support for these systems needs to handle a greater volume of change requests
since they will be handled by one central location servicing a larger number of organizations.

C-2

Conformance to Standards. New standards in software engineering provide for the
development of improved software systems. Reengineering was being performed in many
cases to enable existing systems to conform to these new standards as if they had been
developed using them. These standards include implementation using the Ada programming
language and open systems environments (POSIX). Introducing new standards to the existing
system promised to extend the life of these systems and prepare for future migration.

New Software Sy= Ieveloment. Many of the reengineering efforts examined were
performed to achieve new system requirements. Previous common practice would have
developed a brand new software system; reengineering would utilize as much existing
software as possible, while improving the performance and enhancing the functionality to
meet these new requirements. The inability to develop new software systems due to
decreasing budgets was overcome by reverse engineering existing systems to CASE and
regenerating more modem software systems that would adhere to modem standards.

IchnoQl, analysis. Technology analysis can be facilitated by actually applying interim
technological advances to determine the benefits and examine alternative solutions. This
analysis is often too costly for many organizations, although it would ease technology
twansition by providing proof-of-concept. Research organizations often sponsor pilot projects
or case studies using mock applications to provide proof-of-concept and to assess the benefits
of a maturing technology. Several of the reengineering efforts examined as case studies for
developing the Criteria were analyzing the technology of reengineering to determine its
potential benefits. Software applications were selected to reengineer which were
representative of other projects in the organization; these applications had similar
functionality, were written in the same programming languages, and executed on the hardware
platforms from which many systems were migrating. The candidate applications were often
much smaller than their representative systems, and although this facilitated the reengineering
effort, it was unclear as to whether the resulting data would scale up for larger software
systems [Hobbs92]. The size of a software system is often detrimental to the success of any
software engineering effort by impacting cost, scheduling, and the utilization of resources.
Reengineering is no different.

Case Study Data Summary

Case study data showed that most of the software systems had similar characteristics.
The existing systems were primarily written in the Common Business Oriented Language
(COBOL), with small amounts of hardware-dependent assembly language. There was usually
some in-house method for performing data management. The hardware platforms ranged
from personal computers to mainframe computers. The sizes overall ranged from ten
thousand to over one million lines of source code, although in the cases of the larger systems,
it was often only a portion of the software that was to be reengineered.

C-3

The target software was the Ada programming language, and the desire to incorporate
COTS wherever possible and to integrate with a commercial database management system.
The target platform was often a workstation environment, although more often there was a
need to support multiple or unknown platforms. This was to be achieved through an open
systems environment with POSIX. The target system needed to be adaptable to future
modifications with additional or alternative hardware platforms, while reliably performing its
required functionality.

Suggested Data to be Collected in Future Efforts

Ideally, an organization that is about to begin a reengineering effort should gather data
as the effort progresses. This data should be sent to the authors of this report for further
refinement of the Criteria and should be used in their own organizations to predict the success
of reengineering efforts on similar software systems.

C-4

APPENDIX D

SOFTWARE REENGINEERING SELECTION CRITERIA TABLES

D-1

TABLE I. SOFTWARE CHARACTERISTICS

Software Characteristics Description

Complexity software constructs (conditionals, iterations,
statements), calls to external routines, and I/O

Data structure variables, constants, complex structures (records,
linked lists), user-defined constructs

Languages number of implementation languages and defined
grammars for each

Modularity defined, unique functionality in each module

Size SLOC, function points, number of modules/objects,
bytes, number of files

Software change rate average number of modifications, both corrective and
perfective, over a given period of time

Software importance number of people/organizations serving, number of
external systems interfacing, times accessed per
day/month, life-threatening; function not offered by any
other system in parent organization, or other known
organization

Structural quality an analysis of the structure of the software system, i.e,
missing code, work-arounds.

TABLE II. SYSTEM CHARACTERISTICS

System Characteristics Description

Alternate configurations whether or not there are alternate configurations of this
system; if so, a description of these configurations and
scenarios for when each is an alternative

Commercial software interface number of commercial software packages that interface;
and a description of that interface

Requirement obsolescence to what degree the system requirements are no longer
viable; which requirements are viable

D-2

TABLE III. ENVIRONMENT CHARACTERISTICS

Environment Characteristics Description

Domain consistency whether or not the system exists within a domain and
the description of that domain; whether or not the
system needs to fit within a domain and a description
of that domain

Hardware interface definition of the hardware upon which the system
depends and a description of this interface; whether or
not the system can reside on more than one
hardware/software platform; identification and
description of those platforms if currently residing on
more than one

Organizational goals describes the high level goal(s) of the organization
relative to this software system and the function this
system plays in accomplishing this goal(s).

Usage number and type of Interactions with the system by
individuals, other organizations, and external
automated systems

TABLE IV. DEVELOPMENT FACTORS

Development Factors Description

Design whether or not the design is complete to source code; if
not, identification of missing parts or extent of
incompleteness; whether or not the design is consistent
with the source code; if not, identification of
inconsistency

Development methodology whether or not a well-defined development procedure
was used; whether it is documented in text available to
the public; whether or not this methodology is supported
by automation

Documentation suppiamental documents including reports, tables, user
guides which describe aspects of the system not
necessarily relating to design

Standardization use of well-documented development standards,
continued throughout maintenance

D-3

TABLE V. MAINTENANCE FACTORS

Maintenance Factors Description

Automation whether or not an automated process is used for
modifications

Configuration management a management process for controlling and documenting
modifications and versions of the software system

Improvement status to what degree the system could be improved to meet
the organizational goals; description of these
improvements; to what degree the system could be
improved to meet current known requirements efficiently

Life expectancy amount of time this system is expected to be in
existence

Modification effort (M#) rate of modification over number of modifications times
the average number of maintainers to complete (M, -
M/n'm).

Modification rate (M,) number of modifications per a given period of time
relative to a desired number

TABLE VI. TARGET SOFTWARE CHARACTERISTICS

Target Software Characteristics Description

Functional improvement number and type of functional modifications which
desired ir. ,arallel to the reengineering of this system;
test suite for verifying these

Language migration identification and description of the language
implementation requested for this system

Performance improvement identification and description of the desired performance
improvements for this system; test suite for validating
these

Technology insertion identification of specific technological advances that
could be implemented to improve the software system,
including new commercial packages

D-4

TABLE VII. NEW SUPPORT CHARACTERISTICS

New Support Characteristics Description

Adaptability to what extent the new support environment will enable
the software system to adapt to a changing
environment, i.e., enhancements, alternate software/
hardware implementations, integration of new
components

Automation insertion desire to maintain the software system using automated
techniques

Domain consistency to what extent the new support environment supports
other systems in the same domain

Maintenance improvement identification and description of specific improvements to
the overall maintenance process; to what degree the
current maintenance practices are no longer useful;
description of the problems

TABLE VIII. NEW ENVIRONMENT CHARACTERISTICS

New Environment Characteristics [Description

Domain insertion identification and description of the new target domain

New hardware platforms number and type of hardware interfaces which are to be
integrated to this system; identification and description
of alternative or new hardware platforms

New Usage new people, organizations, or automated systems that
must now interface with this software system

New organizational goals new organizational goal(s) that must be addressed by
this software system and how

D-5

TABLE IX. ORGANIZATION FACTORS

Organization Factors Description

Budget constraints budget limitation and predicted allocation of this amount
to various resources and phases of the intended
reengineering activity(s)

Effort estimations projected estimations regarding manpower and time for
performing the reengineering activity(s)

Management commitment definition of management expectations and limitations;
schedule for identification of management objectives
and proof of progress throughout the reengineering
activity(s)

Schedule establish management approved schedule for
performing the reengineering activity(s), including
alternative plans based on trade-offs measured
throughout the activity

TABLE X. METHODOLOGY FACTORS

Methodology Factors [Description

Automation support automated support for the methodology selected to
perform the reengineering

Forward engineering support to what extent the reengineering tools support the
forward engineering processes; identification and
description of the interfaces to these processes

Methodology selection identify and select a well-defined methodology; insure
training is available and that the methodology meets the
goals of the organization; insure that the methodology is
usable across domains and in support throughout the
maintenance process

Reuse commitment investigate reuse options whenever possible

D-6

TABLE XI. AUTOMATION FACTORS

Automation Factors Description

Capability limitations limitations on use of tool, i.e., maximum number of
17_ users, limitations on methodology support

Platform support insure that hardware/operating systems and integration
to existing or selected reengineering platform
environment; identification of platforms supporting tools
and the limitations of this support

Target hardware support relationship of tool to hardware platform of reengineered
product (does the target hardware itself support the
tool, does the tool support the development of software
for the target hardware)

Tool availability does the tool currently exist in the organization, is the
organization capable of acquiring this tool,
understanding the cost and time for procurement

TABLE XlI. PERSONNEL FACTORS

Personnel Factors Description

Existing system expertise personnel with the expertise on the functionality,
operations, and performance of the existing system and
are committed to the reengineering effort

Target system expertise personnel with the expertise on the desired functionality,
operations, and performance of the target software
system and are committed to the reengineering effort

Reengineering expertise personnel with the expertise on the methodology and
automated tools for performing the reengineering
activity(s) and are committed to the reengineering effort

D-7

(This page was intentionally left blank.)

D-8

APPENDIX E

SOFTWARE REENGINEERING CRITERIA QUESTIONNAIRE

E-I

SOFTWARE REENGINEERING CRITERIA QUESTIONNAIRE

The following questionnaire documents data that is useful in identifying candidate information
systems for software reengineering. Please answer the following questions.

I. Existing Software System Criteria (Existing Software System Criteria is composed of
product characteristics that describe the existing software system, the environment in which it
operates, and process factors which influenced the development and maintenance of the
system.)

A. Product Characteristics (Product characteristics describe the software system,
including software characteristics and system characteristics, and the characteristics
describing the environment in which each system operates.)

1. Software Characteristics (Software characteristics describe the source code of the
system.)

- What is the complexity of the software? (identify those modules with highest
complexity for additional examination)

- What is the data structure used in the software?
- What programming languages are used to implement the software?
- Is there modularity in the software? Do modules perform identifiable functions

or display specific behavior?
- What is the size of the software? (How many lines of source code/function

points?)
- What is the software change rate? (The number of modifications made over a

given period in time)
- What is the software importance? (Number of times each software is accessed

in a given period of time; is the software functionality life-threatening; does the
software perform some function(s) not performed anywhere else in the
organization?)

- What is the structural quality of the software? (Is there missing code or "dead"
code that is never executed; is there evidence of work-arounds that modify the
software)

2. System Characteristics (System characteristics describe any commercial or external
software packages that integrate with source code to meet system requirements.)

- Are there alternate configurations of each software and what are the conditions
for which these exist?

- What commercial software interface does the system contain? (e.g., DBMS and
X-Windows)

- Are existing requirements obsolete or need change?

E-2

3. Environment Characteristics (Environment characteristics describe the
organization's primary functions with respect to how the software system operates.)

- Are there domain consistencies which must be maintained by each system?
- What is the hardware interface for each software system? (Is there a strong

relationship between hardware and software? Is the current software portable to
other hardware platforms?)

- What organizational goals do these software systems address and how?
- What is the usage of the software? How many users are there for each

system? How many individuals, organizations, or automated systems use each
system?)

B. Process Factors (Process factors describe the aspects of the original development
process and the maintenance process which have impacted the current implementation of
the software system.)

1. Development Factors (Development factors define aspects of the development
process which have affected the software system implementation)

- Does a high level design of the software exist? (Is the available design
complete with respect to the current software? Is the available design consistent
with respect to the current software?)

- What development methodology was followed? (Were structured methodologies
or some type of well-defined and documented methodology utilized?)

- What supporting documentation exists?
- What standardization principles were used in the development of the software?

2. Maintenance Factors (Maintenance Factors define aspects of the development
process which have affected the software system implementation.)

- Is the maintenance process supported by automation?
- Is any form of configuration management employed in maintenance process?
- What is the improvement status of the software? (Is the system status regarded

as one of improvement or decline? Is the current system defective?)
- What is the life expectancy of each system? How long is each system expected

to operate?
- What is the modification effort? (How many labor hours are spent modifying

the system?)
- What is the modification rate? (How often is the system modified?)

E-3

II. Reengineered Software System Criteria (Reengineered Software System Criteria include
those criteria which describe the desired products of the reengineering process and the
factors which influence the reengineering process.)

A. Reengineering Product Characteristics (Reengineering Product Characteristics describe
the desired characteristics of the new target software, the new support environment and
the environment in which the software will be operating.)

1. Target Software Characteristics (Target Software Characteristics describe the
modifications that are desired between the existing software and the new software.)

- Will the system be functionally improved? (Are new functional requirements
being added?)

- Is there a desire to migrate to another language?
- Will the performance of the system be improved? (Will new performance

requirements be introduced?)
- Can technology insertion improve the software system? Are new technologies

available that would greatly improve system implementation?

2. New Support Characteristics (New support characteristics define the qualities
desired in a new maintenance process.

- Is the goal to make the system adaptable?
- Is there a desire to automate the maintenance process?
- Is the goal to make the system domain consistent?
- Is there a desire to improve the maintenance process or change to a new or

different automated support environment?

3. New Environment Characteristics (New Environment Characteristics describe the
new operational environment to which the existing system must migrate.)

- Is there a desire to insert systems into a new domain?
- Initially, is there a desire to move to another/multiple new hardware pla(/brms?
- Are new users of the system?
- Is there a new organizational goal to which each software system must adhere?

E-4

B. Reengmerbing Process Factors (Reengineering Process Factors define the influence of

the organizational goals, reengineering methodology, and the available resources.)

1. Organization Factors

- Are there budget constraints in which to perform reengineering?
- Have effort estimations been made as to the schedule and effort of the

reengineering? (including personnel, tools, training, operating, post-
implementation costs, reengineering)

- Is management committed to renewing these systems? Which ones?
- Are there schedules to adhere to?

2. Methodology Factors

- Is there automation support for the methodology selected?
- Does the methodology selected link to the forward engineering environment?
- Has a methodology for reengineering already been selected?
- Is there a reuse commitment to introduce reusable components into the system

wherever possible?

3. Resource Factors

a. Automation Factors

- Are there capability limitations in the available tools for reengineering?
- Is there reengineering hardware platform available to support tools, system

data, and the reengineering process?
- Are there reengineering tools that support the development of software

systems for the target hardware(s) of the reengineered system (if
applicable)?

- Are these tools available in the organization currently or will they have to
be procured?

b. Personnel Factors

- Are there personnel available who have existing system expertise in the
operations, functions, and performance of the software system and are
available to work on the reengineering effort?

- Are there personnel available who have target system expertise in the
operations, functions, and performance of the target software system and are
available to work on the reengineering effort?

- Are there personnel who have reengineering expertise and are familiar with
the selected tools?

E-5

(This page was intentionally left blank.)

E-6

APPENDIX F

Example Software Rowgineering Criteria Application

F-I

The following example application of the Software Reengineering Criteria uses data from a
typical software engineering environment (SEE) for information systems within DOD. The
example begins by documenting the candidate SEE using the Software Reengineering Criteria
Questionnaire (Appendix E SOFTWARE REENGINEERING CRITERIA
QUESTIONNAIRE), followed by the application of the criteria resulting in a reengineering
strategy, and a comparison of the application results to an actual reengineering effort within a
similar SEE as proof-of-concept for the Criteria.

5.1 Answering the Software Reengineering Criteria Questionnaire. The Software
Reengineering Criteria Questionnaire was answered below using the available data concerning
typical information systems agencies within DOD.

I. Existing Software System Criteria
A. Product Characteristics

1. Software Characteristics
- What is the complexity of the software? (identify those modules with highest complexity for

additional examination) average system is estimated between 10 and 20 using
Cyclomatic complexity method3, between 5 and 10 for Essential complexity3

- What is the data structure used in the software? data design based on physical
components of the computer system

- What programming languages are used to implement the software? COBOL-74
- Is there modularity in the software? Do modules perform identifiable functions or display

specific behavior? unknown
- What is the size of the software? (How many lines of source code/function points?) 100-150

778KSLOC per software system across multiple programs
- What is the software change rate? (The number of modifications made over a given period

in time) average of 3 per month per system
- What is the software importance? (Number of times software is accessed in a given period

of time; is the software functionality life-threatening; does the software perform some
function(s) not performed anywhere else in the organization?) there are several systems
that perform unique functions, loss of one of these system would be very damaging
to the organization

- What is the structural quality of the software? (Is there missing code or "dead" code that is
never executed; is there evidence of work-arounds that modify the software?) evidence of
patches in many systems, poorly structured in most cases

2. System Characteristics
- Are there alternate configurations of software and what are the conditions for which these

exist? no
- What commercial software interface does the system contain? (e.g., DBMS and X-Windows)

none
- Are existing requirements obsolete or need change? not at this time

3. Environment Characteristics
- Are there domain consistencies which must be maintained by each system? no
- What is the hardware interface for each software system? (Is there a strong relationship

between hardware and software? Is the current software portable to other hardware

F-2

platforms?) Honeywell DPS-8000 computer, software is not portable
- What organizational goals do these software system address and how?
- What is the usage of the software? How many users are there for each system? How many

individuals, organizations, or automated systems use each system?) tape interface with
several external software systems; tape Interface with several devices, including HP
1000-A minicomputer and a NCS Westinghouse Scanner; system Is on-line

B. Process Factors
1. Development Factors

- Does a high level design of the software exist? (is the available design complete with
respect to the current software? Is the available design consistent with respect to the current
software?) data requirements for each system existed when it was built, but were
never documented.

- What development methodology was followed? (Were structured methodologies or some
type of well-defined and documented methodology utilized?) no standard procedure

- What supporting documentation exists? very little
- What standardization principles were used in the development of software? unknown

2. Maintenance Factors
- Is the maintenance process supported by automation? no automation, manual data

management facilities
- Is any form of configuration management employed in maintenance process? unknown
- What is the kiprovement status of the software? (Is the system status regarded as one of

improvement or decline? Is the current system defective?) maintenance back-log which is
Increasing for at least one system, ever-increasing user demands mean there are
several systems that are becoming outdated, system quality Is relatively remaining
the same

- What is the life expectancy of each system? How long is each system expected to operate?
indefinite, the functionality of these systems will be continuously required

- What is the modification effortP? (How many labor hours are spent modifying the system?)
more than 32 hours per month average, maintainers have expressed general difficulty
in making software changes

- What is the modification rate? (How often is the system modified?) unknown

II. Reengineered Software System Criteria
A. Product Characteristics

1. Target Software Characteristics
- Will the system be functionally improved? (Are new functional requirements being added?)

not at this time
- Is there a desire to migrate to another language? Ada and 4GL
- Will the performance of the system be improved? (Will new performance requirements be

introduced?) better response to user requests is needed
- Can technology insertion improve the software system? Are new technologies available that

would greatly improve system implementation? yes, DBMS

2. New Support Characteristics
- Is the goal to make the system adaptable? yes (future migrations are anticipated for

each system)
- Is there a desire to automate the maintenance process? yes
- Is the goal to make the system domain consistent? migrate these systems towards

F-3

DISA/CIM information systems domain
- Is there a desire to improve the maintenance process or change to a new or different

automated support environment? yes, current maintenance organization is declining:
there Is a need to reduce current maintenance costs, Improve data management, and
ease modification effort

3. New Environment Characteristics
- Is there a desire to insert systems into a new domain? none at this time
- Initially, is there a desire to move to another/multiple new hardware platforms? yes, AT&T

B32 processor and others, all running Unix
- Are there new users of the system? none at this time
- Is there a new organizational goal to which each software system must adhere? prepare for

future Integration with DISA/CIM Information systems, need to better express the data
requirements of the business environment

B. Process Factors
1. Organization Factors

- Are there budget constraints In which to perform reengineering? unknown
- Have effort estimations been made as to the schedule and effort of the reengineering?

(including personnel, tools, training, operating, post-implementation costs, reengineering)
unknown

- Is management committed to renewing these systems? unknown Which ones?
- Are e, re schedules to adhere to? none at this time

2. Methodology Factors
- Is there automation support for the methodology selected? Bachman COBOL Capture and

Data Analyst tools
- Does the methodology selected link to the forward engineering environment? DOD-STD-

2167A will be followed
- Has a methodology for reengineering already been selected?, reverse engineering and

forward engineering
- Is there a reuse commitment to introduce reusable components into the system wherever

possible? unknown

3. Resource Factors
a. Automation Factors

- Are there capability limitations in the available tools for reengineering? none at this
time

- Is there reengineering hardware platform available to support tools, system data, and
the reengineering process? Dec 5100/Ultrix, Personal Computers

- Are there reengineering tools that support the development of software systems for the
target hardware(s) of the reengineered system (if applicable)? unknown

- Are these tools available in the organization currently or will they have to be procured?
some currently available, but were procured for this effort

b. Personnel Factors
- Are there personnel available who have existing system expertise in the operations,

functions, and performance of the software system AM are available to work on the
reengineering effort? yes: it is understood that expert domain knowledge is
Imperative to capturing the domain knowledge and at some of the systems have
experts available to form redesign groups

F-4

Are there personnel available who have target system expertise in the operations,
functions, and performance of the target software system and are available to work on
the reengineering effort? yes: Redesign groups, contractors, and DISAXCIM
Are there personnel who have reengineering expertise and are familiar with the selected
tools? some: training is required for specific tools; contractors and DISA/CIM have
reengineering experience

5.2 Suggested Reeneneering Strategy Based on Criteria. The suggested reengineering
strategy based on the criteria is derived through the following process. Each question in the
questionnaire relates to a specific criteria that is highlighted in the text of the question. The
definition of each criteria is obtained from Section 4 and examined using the answer to the
question. This examination extracts the relevant text from the defimition based on the answer
to the question. From the relevant text references to the application of the specific
reengineering capabilities as defined in Section 2 are extracted and then combined across
criteria and finally consolidated to eliminate any redundant text. The reengineering strategy is
then presented based on these capabilities. It is important that specific methodologies [for
these capabilities] be chosen that are compatible with the requirements of the organization and
are supported by automation where possible [Ruhl9l, p21]. The reengineering strategy for the
exampie utilizes redocumentation, restructuring, and reverse engineering with forward
engineering techniques.

Since several software systems in this SEE are likely to benefit from varying
reengineering techniques, it is probable that one system should be chosen that is
representative of the others for a first reengineering effort. The system should also exhibit
some of the unique qualities of the systems documented in the answers to the questions above
as possible. For example, it was stated that some of the software systems interfaced with
external software systems and hardware devices. It was also stated that a limited number of
systems had personnel available with system expertise. A candidate system should be
selected which has at least one interface to an external software system and one to a hardware
device. Personnel with the expertise on this system should also be available to confer during
the reengineering process.

Redocumentation should be used to provide insight into the current structure of the
data, generating tables of variable names, and usage. The data structure criteria determined
that the software systems in the example SEE contained data design that was based on the
physical components of the computer system. Steps should be taken to rename data to more
informative terms. Documentation supports reverse engineering by providing supplemental
information that is useful in distinguishing design and requirements information from
implementation idiosyncracies for improving portability. Redocumenting the software using
an automated tool can provide fast information about the software architecture that can be
maintained along with the system. The design and documentation criteria determined that
there was little supplemental representations of the software systems.

F-5

Restructuring the data model and software architecture may better prepare the software
for future modifications. The structural quality criteria suggests that these can be improved.
However, the longer the system is expected to be in service, the more likely it is that the
entire system should probably be reverse engineered. The life expectancy criteria states that
this system is expected to remain in use for an extended period of time. Older systems that
are still relied upon for their functionality will probably continue to serve a useful function in
the future and should be moved to a more maintainable, survivable status. During
restructuring existing system experts should be used to verify that this process is not altering
the functionality of the software system (during restructuring, existing and target system
expertise are usually the same individuals since only the performance aspects of the system
are altered and functionality remains the same). During restructuring, target software experts
insure that performance has been improved. The existing system expertise and target system
expertise criteria suggest that personnel possessing this expertise are available to perform
these tasks, thus improving the likelihood of success in reengineering.

Reverse engineering the data model and integrating an efficient data management
facility will provide the biggest payoff for this information system. Reverse engineering can
salvage an existing software design, which can then be restructured and reimplemented into a
more modern software system that utilizes advanced software engineering technology. The
lack of current designs as suggested by the design criteria supports the generation of such
representations. Reverse engineering the data models from the software and incorporating a
commercial database may improve data management as suggested by the technology insertion
criteria. Improved naming conventions can be achieved when reimplementing to a new
programming language that does not limit the designation of variables by length or characters,
and permits extended structures. Migration to advanced hardware platforms also can affect
data naming and structure conventions, often enabling greater memory capacity. Poorly
structured software is candidate for reverse engineering to a design representation that can
then be restructured. Time may be wasted on analyzing and reverse engineering dead code
that is of no value to the software. Steps should be taken to manually parse through the code
to eliminate unnecessary code. During forward engineering target software experts are
consulted to insure the new system meets all requirements, including functional and
performance.

Reverse engineering the software into a CASE tool will help integrate automation into
the maintenance process. Modernizing the system promises to improve system performance
as well as the response time of maintainers to change requests from the users. Reverse
engineering and regeneration of the software may be useful in generating a new software
system for the new hardware. Reengineering is often used to modernize the software to a
implementation that is better suited for future migrations [MITRE92]. Eliminating hardware
dependencies when using the recovered design in a new implementation may make the
software more portable for future migrations to new or alternative hardware platforms.
Reusable components may be incorporated into the existing system to replace outdated
components and improve the performance of the software. Reverse engineering the software
into a CASE tool may facilitate the generation of implementations in alternative languages.

F-6

Reverse engineering to a high level design and then regenerating the software in Ada is
another option. During reverse engineering and redocumentation, these experts should verify
that the recovered design and support documentation accurately portray the software system.
They should also be consulted to clarify complex or confusing aspects of the software system
throughout the reengineering process.

Automated tools, if available, may be useful in supporting this reengineering strategy.
The tool performance will be impacted by several issues, including size and complexity. In
general, reengineering processes that are easy to automate will be more successful on smaller
software modules. More manual efforts will be required on larger modules. Poor structure
may cause automated tools difficulty in analyzing the source code. It may be advantageous
for a team of programmers to go through the code manually to identify such areas in the code
and perhaps manually discard or modify them. Considering the focus of most CASE tools for
a particular computing environment, one set of CASE tools should not be depended on for
uniform applicability to all software systems across this organization [Ruhl91, p21]. In
addition, since several tools may be used during reengineering, it is important to consider not
only the impact of these tools on the existing software engineering environment in the
organization, but whether or not there is data interchange capability between these tools.
Good business sense should be applied when considering the purchase of expensive tools.
The personnel with the expertise on the methodologies and automated tools for performing the
reengineering activity(s) should work with the appropriate experts to match the technical
approach for reengineering with the characteristics of the software system and the desired
target system. If these experts do not readily exist, the reengineering strategy must
accommodate appropriate training for the methods and tools associated with the reengineering
strategy selected.

5.3 Comparison of Strategy to Actual Reengneering Effort. The strategy proposed by the
Software Reengineering Criteria was similar to one performed in an actual reengineering
effort [MITR92]. This effort involved a software system similar to the one suggested for a
first time reengineering effort in the example organization above. The software system was
typical of those in the SEE according to the size, languages, and usage criteria. This system
was 120K source lines of COBOL and included tape interfaces.

The actual effort primarily consisted of reverse engineering the logical data model
from the COBOL source code and available documentation. The forward engineering process
has yet to be complete,*, but consists of generating a new logical data model, physical data
model, and new database design.

The Bachman COBOL Capture and Data Analyst tools were used to capture the
system's data requirements. The data structure and documentation criteria suggest that
redocumentation be used to understand the current structure of the data and using an
automated tool would speed the process as suggested by the Methodology factors. Reverse
engineering was used to capture the data model and the Bachman toolset automatically

F-7

provided some of the suggested information on the data requirements during this process.
The technology insertion criteria did suggest that reverse engineering the data model and
integrating an efficient data management facility would provide the biggest payoff for this
information system and this was the approach taken in the actual project.

The key issues with respect to the existing system were data management and software
characteristics. Data management was not very efficient, utilizing manual means. Improving
the data management process was key to improving the system, since a large percentage of
the existing system functions centered on data management (70-80%). Data names were not
very informative, and better naming conventions were desired in the target system. The
COBOL source code had been modified so often that it was poorly structured as suggested by
the structural quality criteria.

Technology support for reengineering to efficiently support data management and
maintenance was determined immature during this reengineering effort. Reverse engineering
of COBOL and translation tools from COBOL to Ada were also viewed as limited. There
were delays in installing software due to incomplete documentation and the limitations of the
tools which had to be compensated for manually. These limitations are addressed by the
capability limitations criteria which was unknown prior to the reengineering effort.

The new hardware plaborms criteria determined that the decision had been made to
move to an advanced software and hardware platforms in anticipation that this would also
improve the system. The hardware platform would also improve data management and
support the integration of a commercial DBMS. The target system selected was a Unix-based
AT&T 3B2 computer and the implementation languages of Ada and a fourth generation
language (4GL), integrated with the Oracle relational database. These implementation
decisions also supported the new organizational goal criteria.

The Criteria recommended that automated tools should be considered, and that
appropriate training for the methods and tools must be incorporated into the schedule. If
these tools did not exist then adequate compensation for their limitations should be made by
experienced personnel. The actual effort found that available technology was immature and
processes had to be performed manually. The schedule and effort estimations criteria refer to
the issues which must be considered when establishing milestones for a reengineering project,
which include training and tool installation. This criteria warns that delays should be
expected in utilizing automated tools with respect to training and that adequate hardware
platforms are necessary to support these products. It was not clear in this reengineering effort
as to whether reasonable estimates and schedules were made, however these issues resulted in
delays and execution problems for the actual effort.

5.4 How Results Are Derived. The following explains how the answers to the Software
Reengineering Criteria Questionnaire in Section 5.1 determined the reengineering strategy
presented in Section 5.2. Each question in the questionnaire relates to a specific criteria that

F-8

is highlighted in the text of the question. The definition of each criteria is obtained from
Section 4 and examined. This examination extracts the relevant text from the definition based
on the answer to the question. From the relevant text references to the application of the
specific reengineering capabilities as defined in Section 2 are extracted, then combined with
other criteria and finally consolidated to eliminate any redundant text. This text was then
consolidated by combining text which applied to like reengineering capabilities. For example,
all of the criteria which implied reverse engineering strategies was combined to form the
reverse engineering strategy presented in Section 5.2. Each question and answer is listed
below followed by the appropriate text for each criteria from Section 4.

What is the complexity of the software? (identify those modules with highest complexity for
additional examination) average system is estimated between 10 and 20 using Cyclomatic
complexity method3, between 5 and 10 for Essential complexity3

The complexity criteria states that "Restructuring the existing software may lessen the
complexity without altering the functionality of the software. Emphasis should be placed on
eliminating goto statements and code that is never executed. The software can also be reverse
engineered to a high level design which is then restructured and used to generate a more
concise and efficient implementation of the software. The reverse engineering process must
be verified to insure that the recovered design accurately captures the existing software. This
process is preferred when there are additional implementation changes desired, such as
converting to the Ada programming language."

What is the data structure used in the software? data design based on physical components
of the computer system

The criteria states that "Data design is the key structural component in most information
systems, requiring extensive database management. The largest percent of functionality in
most information systems is performed within the context of data management. The data
architecture is often the driving force behind the software control flow architecture. For this
reason, emphasis should be placed on the data design because it will force modifications to
the process design [Ruhl9l, p17]. Redocumentation may provide insight into the current
structure of the data, generating tables of variable names, and identifying within the software
where the data is used and modified. Steps should be taken to rename data to more
informative terms as permitted in the current software implementation [MITR92] and to
adhere to DOD standards concerning data naming conventions. Reverse engineering the data
model and integrating an efficient data management facility will provide the biggest payoff
for most information systems [MITR92]. Improved naming conventions may only be
achieved by reimplementing in a new programming language, such as a language that does
not limit variable name length or characters that can be used. Migration to advanced
hardware platforms also can improve data structure and naming conventions through increased
memory capacity."

F-9

What programming languages are used to implement the software? COBOL-74

The criteria states that "Translation is usually most successful in efforts where the goal is to
solely generate a new version of the system in another language that is similar to the current
language or a different version of the same language. This effort is also under time
constraints and is minimally funded. This strategy is most successful with small programs
where the software architecture and data structure will remain the same. Reverse engineering
to a language-independent design is an alternative to translation which may be more time-
consuming and expensive. This design can then be used to generate a more efficient
representation of the software which is more efficient, taking advantage of the new language
constructs. Translation does not incorporate alternative implementations which use the unique
features of the target language. This must be accomplished through manual conversion or
restructuring techniques."

What is the size of the software? (How many lines of source code/function points?) 100-150
KSLOC per software system across multiple programs

The criteria states that "Cost and schedule will also be impacted by the size. In general,
reengineering processes that are easy to automate will be more successful on smaller software
modules. More manual efforts will be required on larger modules."

What is the software change rate? (The number of modifications made over a given period in
time) average of 3 per month per system

The criteria states that "Assessments should be made to determine what the needs of the user
are relative to the functionality of the software. An ever-changing software system should be
quickly migrated to a more efficient support environment to better adapt to the needs of the
user. Unnecessary functionality should be eliminated, and desired functionality improved.
Reverse engineering to a CASE environment can provide automated support and is also useful
for generating a more modem system."

What is the software importance? (Number of times the software is accessed in a given period
of time; is the software functionality life-threatening; does the software perform some
function(s) not performed anywhere else in the organization?) there are several systems
that perform unique functions, loss of one of these system would be very damaging to
the organization

The criteria states that "Software importance is determined by the number of people or
organizations which utilize the software system. Users of the system also include external
automated systems with which the candidate system interfaces. Examples of highly critical
software systems includes those that perform functions in no other software system, those

F-10

which could not easily be replaced with another system, and those which would have a
detrimental effect on the organization if they were to be eliminated. A payroll system could
be considered a highly critical system, since its elimination would have an enormous impact
on the organization should the employees experience a delay in their pay. If the system
performs life-threatening functions or unique functions which no other system performs, then
the system is also highly critical. Information dependencies between the candidate system
and external systems, as well as other systems within a like domain should be identified
[Ruhl9l, p15]. The organization should make a determination as to why the system is
important and consider redevelopment or reverse engineering, while the system remains in
use. This system should probably be an example system to analyze from a functional
viewpoint as a basis for determining new technology that will improve the overall current
business practices of the organization [Ruhl9l, pl5]. The cost of reengineering these systems
should be weighed heavily against the importance of its functions and ample support should
be given to improve and secure this type of software system for extended use. Highly critical
systems should be further examined for consolidation to minimize the number of overall
systems which the organization must support."

What is the structural quality of the software? (Is there missing code or "dead" code that is
never executed; is there evidence of work-arounds that modify the software?) evidence of
patches, poorly structured In most cases

The criteria states that "Structural quality describes the structure or architecture' of the
software system. The software architecture may be well-structured and suitable for quickly
converting to a modern programming language or hardware platform. In this case, translation
can be an effective means for performing this conversion. Poorly structured software is a
candidate for code restructuring or for reverse engineering to produce a design representation
that can then be restructured [MITR92]. Poor structure may cause automated tools difficulty
in analyzing the source code. Time may be wasted on analyzing and reverse engineering
dead code that is of no value to the system requirements. It may be advantageous for a team
of programmers examine the code manually to identify such areas in the code and perhaps
manually discard or modify them. Redocumentation techniques can often report on the
structural quality of source code. Automated redocumentation exists that generates structure
charts2 which define the procedures used to implement the software, including the calling
hierarchy, naming conventions, and input and output of data between these modules. This is
useful in quickly identifying modules which are never executed, are not represented in an
existing high level design, or utilize global data [STSC92]."

'Architecture includes the implementation design of the software. The
term Design is used to define a criteria under Development Factors that refers
to the existence of a high-level representation of the software.

2Structure charts depict the structure of the software as
defined by Edward Yourdon and Larry Constantine in Structured
Design, Englewood Cliffs, NJ: Prentice Hall, 1979.

F- I1

Are there alternate configurations of the software and what are the conditions for which these
exist? no

The criteria states that "Alternate configurations identifies whether or not there are alternate
configurations of the software system. The requirements justifying these versions should be
identified and it should be determined whether the alternate configurations can be
consolidated into a single software system. Restructuring the system may improve modularity
for identifying specific functions and enable a system to incorporate functions previously
performed in other systems. Reverse engineering permits the consolidation of these functions
into a uniform design representation that can then be used to generate the new software
system."

What commercial software interface does the system contain? (e.g., DBMS and X-Windows)
none

The criteria states that "Commercial software interface describes the number of commercial
software packages that interface the software system. It is important to identify all of these
interfaces and understand the structure of this interface to insure that any reimplementation or
modification to the existing software maintains this intersection. Poorly integrated system
components is a reason to consider reengineering [MITR92]. Most modernization efforts
integrate commercially available software components, including database management
systems (DBMS) and other software packages to meet system requirements. The key issue
in most of these integration efforts is the data interchange format. Commercial packages do
not easily interact with older programming languages of hardware platforms, thus requiring
conversion to new software and hardware implementations. Reverse engineering the software
to a design representation provides a means for achieving this type of conversion. The design
can be restructured to better integrate commercially available system components and
reimplemented in modern programming languages for state of the art hardware."

Are existing requirements obsolete or need change? not at this time

The criteria states that "Requirement obsolescence describes to what degree the system
requirements are no longer viable. Current system functionality may not conform to user
needs. Obsolete requirements should be eliminated from the existing system during
reengineering. Source code which performs these requirements should be extracted from the
software prior to restructuring if possible, else afterwards. Reverse engineering to the design
level may more easily identify the portions of the software performing these outdated
requirements and can easily be removed from the design prior to reimplementation."

F-12

Are there domain consistencies which must be maintained by this system? no

The criteria states that "Domain consistency describes whether or not the system exists within
a domain and the description of that domain. Modifications to the system must conform
within the constraints of this domain. Often reverse engineering is performed to migrate a
software system to a domain that provides consistency across similar applications in an
organization. Reimplementation of the new system should consider reuse options for
achieving domain consistency as well as consolidation of functionality across multiple
software systems."

What is the hardware interface for this software system? (Is there a strong relationship
between hardware and software? Is the current software portable to other hardware
platforms?) Honeywell DPS-8000 computer, software is not portable

The criteria states that "Hardware interface describes the current hardware platform upon
which the software system executes and a description of the dependencies of the software on
this platform. The hardware capabilities often restrict software implementation options and
these may change given an alternative platform. Antiquated hardware is often the reason for
modernizing the software system [MITRE92]. Fewer dependencies may ease migration to a
new hardware configuration, while strong ties may impact the technical approach taken to
modernize the software. Reverse engineering is useful for generating a hardware-independent
design of the software and determining implementation dependencies which resulted from that
platform. The hardware-independent design can then be implemented for alternate hardware
configurations."

What is the usage of this software? How many users are there for this system? How many
individuals, organizations, or automated systems use this system?) tape interface with
several external software systems; tape interface with several devices, including HP
1000-A minicomputer and a NCS Westinghouse Scanner; system is on-line

The criteria states that "Usage describes the amount of use the software system undergoes,
including the number and type of interactions with the system by individuals, external
organizations and other automated systems. The needs of these entities must be maintained
when modernizing the system. In many cases it is precisely these needs that are driving the
reengineering effort. Modernizing the system promises to improve response times by the
system as well as by maintainers responding to change requests from the users. Reverse
engineering to an automated support environment helps improve the modification process.
Redocumentation provides supporting documentation to maintainers making decisions about
modifications. Restructuring the software may enable the system to more readily accept
modifications without negatively impacting
other parts of the system."

F-13

Does a high level design of this software exist? (Is the available design complete with respect
to the current software? Is the available design consistent with respect to the current
software?) data requirements for each system existed when It was built, but were never
documented.

The criteria states that "Design is a comprehensive high level representation of the software
that is consistent and complete to the current implementation. If this representation exists, it
may be used or restructured to reimplement the software in a standard development process.
If the existing design is not consistent or complete, it may be used as supplemental
documentation during a reverse engineering process which will produce a more
comprehensive and current representation. Reverse engineering is used to generate designs
for software systems that do not have an available design that is complete or consistent with
the current implementation of the software system that is useable in a effective maintenance
process. This may include designs that were not originally developed using structured
modeling techniques or are not supported by an automated process (automation provides
necessary efficient maintenance support) [McCa92]. The design may serve as an end product
that provides system understanding or may serve as a means for implementing a new system
with added functionality or new programming language. Reverse engineering the data model
for information systems often lends insight into how to restructure the data for an improved
implementation."

What development methodology was followed? (Were structured methodologies or some type
of well-defined and documented methodology utilized?) no standard procedure

The criteria states that "Development methodology identifies whether or not a well-defined
development procedure was used in developing this software. If a documented methodology
was used, then it may be easier to understand the impact of this methodology on the
implementation of the software and the design of the software, if it exists. It is also important
to note if automation was used in developing the software system. If the previous
development procedure is still a viable development methodology, then consideration should
be given for utilizing this method in regenerating the software system."

What supporting documentation exists? very little

The criteria states that "Documentation describes any reports, tables, or design record that
exists for the software system. Documentation is credited with being the key to adequate
software maintenance, and yet it is still the most unqualified segment of the software
engineering process. As the languages with which software systems are implemented move to
lower abstraction, the importance of creating adequate documentation becomes more critical.

There are useful suggestions that can be performed immediately to improve the
documentation status of a software system [Hova92]. Obsolete documents, such as those that

F-14

have not been used in more than a year, should be discarded since they are either outdated or
unusable. Perform a documentation audit to determine what documents are needed and set
about generating these documents or making additions to existing incomplete documents.
This can be performed by examining trouble reports that were diagnosed as help requests, or
the user help requests, if these are logged. Finally, new development, as well, as
reengineering should establish documentation as a top priority in these processes. A lack of
adequate documentation is the most common reason for considering reengineering [Ruhl91].
Redocumentation techniques produce various types of documents to supplement the software
system implementations (specification, design, source code). Reports defining the variables,
procedure calls, and procedure interfaces can be useful in gaining a better understanding of
the software. Documentation supports reverse engineering by providing supplemental
information that is useful in distinguishing design and requirements information from
implementation idiosyncracies."

Is the maintenance process supported by automation? no automation, manual data
management facilities

The criteria states that "Automation factor identifies whether or not an automated process is
used for supporting the existing system configuration. Incorporating automation is usually a
high level goal of most organization since it can increase the efficiency of many processes,
including development and maintenance [Room92]. Automated touls can assist the
maintenance process, including language sensitive editors for performing source code
modifications and automated configuration management to provide version control and
document the changes made to the software. Preparation for maintenance can begin in the
development processing Computer-aided software engineering (CASE) tools which can be
used to design and develop software, and then maintain it. Redocumentation is the most
mature automation capability. Redocumenting the software using an automated tool can
provide fast information about the source code architecture. Reverse engineering the software
into a CASE tool can integrate automation into the maintenance process."

What is the improvement status of the software? (Is the system status regarded as one of
improvement or decline? Is the current system defective') maintenance back-log which is
increasing for at least one system, ever-increasing user Jemands mean there are several
systems that are becoming outdated, system quality is relatively remaining the same

The criteria states that "Improvement status identifies to what extent the system is operating
according to the current system requirements There are several methods for measuring faults
in source code, including Gaffney3. If there are current defects in the software or

3Gaffney, John E., "Estimating the Number of Faults in Code," IEEE
Transactions on Software Engineering, vol SE-10, no. 4, July 1984, pp. 459-
465.

F-15

modifications that have been requested which have not been implemented, either due to
modification effort or cost, this may be a good time to consider reengineering options. An
analysis of the system may identify isolated parts of the software which are not performing
adequately. These parts may be reverse engineered, modified at the design level, and
reimplemented. The corrected parts can then be integrated back into the remaining software.
Most existing source code components are so tightly interweaved, that it is usually necessary
to reverse engineer the entire software system and generate a more modular software system.

This criteria also identifies to what degree the system could be improved to meet
current known requirements efficiently. If the system has many modifications that are
necessary in order for it to reach an acceptable level of performance, then consideration
should be given for whether this software should continue as a functioning element in the
organization. It should be clearly understood what changes are necessary and incorporate
those into a reengineering process. Restructuring can be applied to improve the performance
of the software without introducing new functionality. Reverse engineering can be used to
abstract a high level design which could then be used to incorporate new functionality that is
implemented in a new software system."

What is the life expectancy of this system? How long is this system expected to operate?
indefinite, the functionality of these systems will be continuously required

The criteria states that "Life expectancy identifies the number of years this software system is
expected to remain in operation. The system may not be operating much longer because the
functions are becoming outdated or because the software system has been designated for
replacement. If the software is not expected to be in use much longer due to functional
obsolescence, only improvements to the current maintenance process should be considered. If
the software has been designated for replacement, certain reengineering capabilities are
feasible. Only available resources should be applied, including automated tools which
currently exist in the organization. Minimal redocumentation and restructuring should be
performed to provide quick benefits for improving maintenance and extending the life of the
system to insure it remains operational until replacement can be made. Advanced processes
within these capabilities and reverse engineering should be considered only if the option of
replacing the system can be upheld by revitalizing the existing one through reengineering."

What is the modification effort? (How many labor hours are spent modifying the system?)
more than 32 hours per month average, maintainers have expressed general difficulty in
making software changes

The criteria states that "Modification effort identifies the rate of modification over number of
modifications times the average number of maintainers to complete. If the existing software
is very difficult to maintain, this may be a sign that it needs to be reengineered. The software
maintainers should be interviewed to determine if the difficulties are due to a lack of

F-16

understanding, complexity of the software, result in "rippling effect" that leads to more
problems.

A lack of software understanding may be minimized through improved supporting
documentation. Redocumenting the software may identify interrelationships between the
software components that are impacted during maintenance procedures. This can be useful
when modifying software for predicting effects of change on other parts of the software.
Restructuring the software may reduce its complexity, and eliminate unnecessary code. Both
of these techniques may reduce the chances that one modification to the software may have a
disastrous effect on other parts of the software. Severe problems may only be solved through
reverse engineering and a complete regeneration of the software system."

Is there a desire to migrate to another language? Ada and 4GL

The criteria states that "Language migration describes the identification and description of the
language implementation requested for this system. There are several reasons for
reimplementing the software in a different programming language, including implementation
improvements offered by the language or the desire to implement all software in a common
language within an organization to ease maintenance. Within DOD, the standard
programming language selected is Ada. Most modernization efforts within DOD are required
to use Ada. Reengineering the existing software to Ada is one way to adhere to this mandate.
If the current language implementation is similar to Ada, translation can be performed to the
new implementation and if necessary manual code generation for the software which does not
easily convert. Reverse engineering to a high level design and then regenerating the software
in Ada is another option. Often the existing system implementation is used as the baseline, a
design, or supporting documentation which is referenced when generating a new software
system in the target language manually. This may prove to be the most time-consuming
effort."

Will the performance of the system be improved? (Will new performance requirements be
introduced?) better response to user requests Is needed

The criteria states that "Performance improvement describes the identification and description
of the desired performance improvements for this system. These improvements may be
achievable in the existing software implementation, and this should be considered. Although,
more often these performance requirements require improved hardware or new software
implementation. Improving the performance of the software may be an opportunity to
reengineer to a new system implementation. Translation to a new software language for
execution on a new hardware platform is one of the fastest migration techniques, however the
translated software may not utilize the capabilities of the target language or the new hardware.
Reverse engineering to a high level design which can then be targeted for a new hardware
suite is one way to achieve these performance improvements."

F-17

Can technology insertion improve the software system? Are new technologies available that
would greatly improve system implementation? yes, DBMS

The criteria states that "Technology insertion is the identification of specific technological
advances that could improve the implementation of the software. This criteria does not
include automated support for the development or maintenance of software, which is defined
in New Support Characteristics. The awareness of new technology that may support the
existing functionality of the current software system or new requirements that are to be
incorporated into the existing system, may be performed through reengineering [MITRE92].
Reusable components may be incorporated into the existing system to replace outdated
components and improve the performance of the software. Often improved data management
facilities may be incorporated into an information system which previously performed its data
management in an ad-hoc or hard-coded manner. Reverse engineering the data models from
the software and incorporating a commercial database may improve data management. New
programming languages may be used to implement a software system that contains improved
library routines, fimctions and data structures that better support the system requirements.
Reverse engineering can salvage an existing software design, which can then be restructured
and reimplemented into a more modem software system that utilizes advanced software
engineering technology."

Is the goal to make the system adaptable? yes (future migrations are anticipated for each
system)

The criteria states that "Adaptability describes to what extent the new support environment
will enable the software system to adapt to a changing environment, i.e., enhancements,
alternate software/hardware implementations, integration of new components. These
characteristics will prepare the software system for future migrations. Reengineering is often
used to modernize the software to a implementation that is better suited for future migrations
[MITRE92]. Restructuring the data model and software architecture may better prepare the
software for future modifications. Reverse engineering the software into a CASE tool may
facilitate the generation of implementations in alternative languages. Eliminating hardware
dependencies when using the recovered design in a new implementation may make the
software more portable for future migrations to new or alternative hardware platforms."

Is there a desire to automate the maintenance process? yes

The criteria states that "Automation insertion describes the automated techniques that are
needed to support the new support environment. This criteria does not include
implementation techniques supplied by technological advances software development, which
was addressed in Target Software Characteristics. The desire to automate the maintenance
environment is often the reason for modernizing a software system [MITRE92]. CASE tools

F-18

which are used to develop software systems are useful throughout the life of the software by
supporting modifications to the source code while updating designs and documentation.

Steps can be taken to integrate CASE into the existing software engineering
environment within an organization [CIM92]. This is most often successful in more modern
software systems and mature organizations. Many programming languages and older
hardware platforms do not support modern CASE tools, thus forcing the modernization of the
software system itself. Reverse engineering provides a means for extracting information and
populating CASE repositories with data that can be used to support the current
implementation. CASE often includes code generation support for reimplementing the
software into a more modem programming language,"

Is the goal to make the system domain consistent? migrate these systems towards
DISA/CIM information systems domain

The criteria states that "Domain consistency describes to what extent the new support
environment supports other systems in the same domain. Systems that reside in a identifiable
domain should be considered for reengineering for achieving commonality through software
reuse and consolidation. Redocumentation techniques can be used to identify commonality
between software systems. Software system should be consolidated where possible. Reverse
engineering systems within a single domain can enable the generation of a consolidated
system from separate software programs implemented in varying languages and executing on
differing hardware platforms. Reuse modules should be used to implement common
functionality when possible."

Is there a desire to improve the maintenance process or change to a new or different
automated support environment? yes, current maintenance organization is declining: there
is a need to reduce current maintenance costs, improve data management, and ease
modification effort

The criteria states that "Maintainability describes to what extent the new support environment
provides improvements to the overall maintenance process. This identifies specific
technological advances that are a part of the new support environment that improve the
process of supporting the system software and a description of how this is accomplished. The
integration of CASE tools promises to enable faster modifications to the software and
automatic updates to supporting documentation. Reverse engineering is used to produce a
high level design representation that can be stored and automatically supported within a
CASE tool. The ability to make changes and generate updates to this representation and
subsequently the implementation, should improve response time to change requests."

F-19

U

Are there domain consistencies which must be maintained by this system? none at this time

The criteria states that "Domain integration is the identification and description of the new
target domain. The domain may be the programming language, hardware platform, or
functional. Domains from which the current system is far removed may be more difficult to
reach through reengineering and may require a completed redevelopment. A well-structured
and modular software system may incorporate replacement parts that are reuse software
modules that immediately migrate the existing system to a desired domain."

Initially, is there a desire to move to another/multiple new hardware platforms? yes, AT&T
B32 processor and others, all running Unix

The criteria states that "New hardware platforms is the identification and description of
alternative or new hardware platforms. An understanding of the new hardware platform and
how the current software interfaces with is crucial to the success of the system migration.
This describes the number and type of hardware interfaces which are to be integrated to this
system. The new hardware platform often drives the modification of the software to a new or
alternate version. It may be necessary to restructure or update the version of the current
implementation language to execute the software on the new hardware. Restructuring may be
necessary, and replacement of new library modules to accomplish the same functionality of
the existing software. This is also a time to consider an alternate implementation of the
software in another programming language that is more compatible with the hardware and
operating system. Reverse engineering and regeneration of the software may be useful in
generating a new software system for the new hardware."

Is there a new organizational goal to which this software system must adhere? prepare for
future integration with DISAJCIM information systems, need to better express the data
requirements of the business environment

The criteria states that "New organizational goals describes any new organizational goal(s)
that must be addressed by this software system. Room presented high level goals of an
organization which eliminate non-essential products and processes, increase the value of those
remaining; and increase the efficiency of those processes through streamlining, simplification
and/or automation [Room92]. The organization may consider the candidate software system
as non-essential and in this case the best option is to eliminate this software system. More
likely, this software offers some value and should be examined for potential consolidation
with other similar systems for consolidation purposes that will streamline and simplify
maintenance. Automation may also be incorporated as discussed in paragraph 5.2.1.2 New
Support Characteristics and 5.2.2.2 Methodology Factors criteria below."

F-20

Is there automation support for the methodology selected? Bachman COBOL Capture and
Data Analyst tools

The criteria states that "Automated support identifies the automated tools which support the
reengineering methodology. There are several tools available which support various
reengineering activities [STSC92]. It is important to be realistic in what these tools provide.
Investigate their capabilities and be prepared to address inefficiencies through adequate
personnel who are knowledgeable of these tools and can perform processes when the tools do
not Considering the focus of most CASE tools for a particular computing environment, one
set of CASE tools should not be depended on for uniform applicability to all needs across an
organization [Ruhl9l, p21]. In addition, since several tools may be used during
reengineering, it is important to consider not only the impact of these tools on the existing
software engineering environment in the organization, but whether or not there is data
interchange capability. Good business sense should be applied when considering the purchase
of expensive tools."

Does the methodology selected link to the forward engineering environment? DOD-STD-
2167A will be followed

The criteria states that "Forward engineering support identifies to what extent the
reengineering tools support the forward engineering processes; identification and description
of the interfaces to these processes."

Has a methodology for reengineering this system already been selected? reverse engineering
and forward engineering

The criteria states that "Methodology selected identifies a well-defined methodology; insures
training is available and that the methodology meets the goals of the organization. A
methodology should be chosen that is compatible to the requirements of the organization and
are supported by automation where possible [Ruhl9l, p21]. It is cost-effective if this
methodology is usable across domains and transitions the system to a better maintenance
process."

Is there reengineering hardware platform available to support tools, system data, and the
reengineering process? Dec 5100/Ultrix, Personal Computers

The criteria states that "Platform support identifies the hardware/operating systems and
integration to existing or selected reengineering platform environment; the platforms
supporting tools and the limitations of this support."

F-21

*

Are these tools available in the organization currently or will they have to be procured? some
currently available, but were procured for this effort

The criteria states that "Tool availability identifies whether the tool currently exists in the
organization, is the organization capable of acquiring this tool, understanding the cost and
time for procurement."

Are there personnel available who have existing system expertise in the operations, functions,
and performance of the software system and are available to work on the reengineering effort?
yes: it is understood that expert domain knowledge is imperative to capturing the
domain knowledge and at some of the systems have experts available to form redesign
groups

The criteria states that "Existing system expertise identifies the personnel with the expertise
on the existing system. During reverse engineering and redocumentation, these experts should
verify that the recovered design and support documentation accurately portray the software
system. They should also be consulted to clarify complex or confusing aspects of the
software system throughout the reengineering process. During restructuring these individuals
should be used to verify that this process is not altering the functionality of the software
system (during restructuring, existing and target system expertise are usually the same
individuals since only the performance aspects of the system are altered and functionality
remains the same)."

Are there personnel available who have target system expertise in the operations, functions,
and performance of the target software system and are available to work on the reengineering
effort? yes: Redesign groups, contractors, and DISA/CIM

The criteria states that "Target system expertise identifies personnel who possess the expertise
on the desired target system. These individuals should verify new requirements for achieving
the target system and should be consulted to clarify any confusing aspect of the proposed
target system. During forward engineering these individuals should be consulted to insure the
new system meets all requirements, including functional and performance. During
restructuring, these individuals insure that performance has been improved."

Are there personnel who have reengineering expertise and are familiar with the selected
tools? some: training Is required for specific tools; contractors and DISA/CIM have
reengineering experience

The criteria states that "Reengineering expertise identifies whether the personnel exist with the
expertise on the methodologies and automated tools for performing the reengineering
activity(s). These individuals should work with the appropriate experts to match the technical

F-22

approach for reengineering with the characteristics of the software system and the desired
target system. If these experts are not available, the reengineering strategy must supply
appropriate training for the methods and tools associated with the reengineering strategy."

F-23

